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ABSTRACT  Based on the idea that selective neutrality is
the limit when the selective disadvantage becomes indefinitely
small, a model of neutral (and nearly neutral) mutations is pro-
posed that assumes that the selection coefficient (s') against the
mutant at various sites within a cistron (gene) follows a T" dis-
tribution; f(s") = aBe~2ss’6~1/T(B), in which a = 8/5’ and
§ is the mean selection coefficient against the mutants (s > 0;
1 = B > 0). The mutation rate for alleles whose selection coef-
ficients s’ lie in the range between 0 and 1/(2N, ), in which N,
is the effective population size, is termed the effectively neutral
mutation rate (denoted by v,). Using the model of “infinite
sites” in population genetics, formulas are derived giving the
average heterozygosity (h.) and evolutionary rate per generation
(kg) in terms of mutant substitutions. It is shown that, with pa-
rameter values such as 8 = 0.5 and 5/= 0.001, the average het-
erozygosity increases much more slowly as N, increases, com-
pared with the case in which a constant fraction of mutations
are neutral. Furthermore, the rate of evolution per year (k))
becomes constant among various organisms, if the generation
span (g) in years is inversely proportional to V'N, among them
and if the mutation rate per generation is constant. Also, it is
shown that we have roughly k; = v,. The situation becomes
quite different if slightly advantageous mutations occur at a
constant rate independent of environmental conditions. In this
case, the evolutionary rate can become enormously higher in
a species with a very large population size than in a species with
a small population size, contrary to the observed pattern of ev-
olution at the molecular level.

Among difficult questions that confront the neutral mutation
theory purporting to treat quantitatively the evolution and
variation at the molecular level, the following two are partic-
ularly acute. First, why the evolutionary rate in terms of mutant
substitutions is roughly constant per year for each protein (such
as hemoglobin q; see refs. 1 and 2) among diverse lineages, even
if the mutation rate appears to be constant per generation rather
than per year. Secondary, why the observed level of the average
heterozygosity stays mostly in a rather narrow range (between
0% and 20%; see ref. 3) among various species, even if their
population sizes differ enormously.

The present paper proposes a2 model of neutral mutations in
which selective constraint (negative selection) is incorporated,
and shows that the model can go a long way toward solving
these problems in the framework of the neutral mutation theory
(4, 5). The model is based on the idea that selective neutrality
is the limit when the selective disadvantage becomes indefi-
nitely small (2). For the mathematical formulation of this idea,
we must consider the distribution of the selection coefficients
of new mutations at the neighborhood of strict neutrality (6, 7).
Recently, Ohta (8) investigated a model in which the selection
coefficients against the mutants follow an exponential distri-
bution. From the standpoint of the neutral mutation theory,
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however, Ohta’s model has a drawback in that it cannot ac-
commodate enough mutations that behave effectively as neutral
when the population size gets large. This difficulty can be
overcome by assuming that the selection coefficients follow a
T distribution.

MODEL OF EFFECTIVELY NEUTRAL
MUTATIONS

Let us assume that the frequency distribution of the selective
disadvantage (denoted by s”) of mutants among different sites
within a gene (cistron) follows the I" distribution
f(s') = abe=es's’B=1/T'(B), (1]

in which a = 8/5, § is the mean selective disadvantage, and
@ is a parameter such that 0 < 8 = 1. If we measure the selective
advantage in terms of Fisher’s Malthusian parameter (9), s” has
the range (0, ). On the other hand, if we measure it, as we shall
do in this paper, in terms of conventional selection coefficient,
the true range of s’ is restricted to the interval (0, 1). However,
because we assume that 5’ is small, with a typical value of 1073,
f(s”) is negligible beyond s’ = 0.1 so that we can take the entire
positive axis as the range of integration without serious error.
Note that in this formulation, we disregard beneficial mutants,
and restrict our consideration only to deleterious and neutral
mutations. Admittedly, this is an oversimplification, but as I
shall show later, a model assuming that beneficial mutations
also arise at a constant rate independent of environmental
changes leads to unrealistic results.

Let us consider a diploid population of the effective size N,
and denote by v, the effectively neutral mutation rate that is
defined by the relationship

Ve =0 J; N f(s")ds’, (2]

in which o is the total mutation rate. For 2N.s’ > 1, Eq. 2 is
approximated by
v B

T+ B) leN.5
Fig. 1 illustrates the distribution f(s) for the case 8 = 0.5 and
§” = 1073, In this figure, the shaded area represents the fraction
of effectively neutral mutations (v./v) when the effective
population size (N,) is 2500. This fraction becomes smaller as
the population size increases. Note that even if the frequency
of strictly neutral mutations (for which s’ = 0) is zero in the
present model, a large fraction of mutations can be effectively
neutral if 3 is small [note that £(0) = = for 0 < 8 < 1]. We may
regard (3 as representing the degree of physiological homeo-
stasis, while § represents the degree of functional constraint
of the molecule. In the limiting situation 8 — 0, all mutations
become neutral. On the other hand, if 8 = 1, the model reduces
to Ohta’s model (8) for which v./v = 1/(2N,5’) when 2N,§" >
1.

B
Ve .

(3]
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Fi1G. 1. Frequency distribution of selection coefficients among
mutants at different sites within a cistron (gene). The shaded area

represents the fraction of effectively neutral mutations. Parameter
values assumed are § = 0.5 and 5’ = 0.001. For details, see text.

EVOLUTIONARY RATE

In order to calculate the rate of evolution in terms of mutant
substitutions, we assume that the number of available sites
(nucleotide or codon sites) for mutation is sufficiently large,
while the mutation rate per site is very low so that whenever
a mutation occurs it represents a new site in which no mutant
forms are segregating within the population. This assumption
is known as the model of infinite sites in population genetics.
This model was originally formulated (10) with all the nucle-
otide sites of the genome in mind. The number of nucleotide
sites making up a single gene is much smaller, being of the order
of several hundreds. Nevertheless, we may apply the infinite
site model to a gene locus as a reasonable approximation if the

number of segregating sites per gene constitutes a small fraction.

It is known (10) that under this model if v is the total mutation
rate and if all the mutations are neutral, the expected number
of segregating sites is

I) = 4N,v[log.(2N) + 1], [4]

in which N and N, are, respectively, the actual (apparent) and
the effective sizes of the population. If the mutations are dele-
terious, the number of segregating sites is smaller. So, I; in Eq.
4 may be used to check if the infinite site model is appropriate.
As a typical situation, we take v =2 X 1076, N, = 105, and N
= 105; then we get I; = 12.4. This constitutes a small fraction
compared with several hundred, so the infinite site model may
be applicable. However, as N, becomes larger, I soon gets large
enough so that the assumption of infinite sites becomes no
longer valid. In such cases, the treatment gives overestimates
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particularly for the level of heterozygosity. The treatment may
still be useful to obtain the upper limit to the heterozygosity.

With this precaution, we proceed to calculate the rate of
evolution in terms of mutant substitutions. Let us assume that
the mutant is semidominant in fitness so that selection coeffi-
cients against the mutant homo- and heterozygotes at a site are
2s” and s, respectively. For such a mutant, the probability of
eventual fixation in the population is given by

u = (1= = O/M/(1 = ), 5]
or, if s’ is small,
u = 25'(N./N)/(e*Net’ — 1) (6]

to a good approximation. For the rationale of Eq. 5 see ref. 11,
particularly p. 426. Then the rate of mutant substitution per
generation is

ky = j; " aNouf(s')ds’, (7

in which the subscript g denotes that it refers to the rate per
generation rather than per year. Eq. 7 is based on the consid-
eration that the expected number of new mutants that arise in
the population in each generation having selective disadvantage
in the range s’ ~ s’ + ds’ is 2Nof(s’)ds’, of which the fraction
u eventually reaches fixation in the population. Substituting
Egs. 1 and 6 in Eq. 7, we get, after some computation,

ke =0BRE Y (j + 1+ R)6-), 8]
) j=0
in which R = 8/(4N.5’). In Fig. 2, kg is shown by a solid curve

taking the effective population size (N,) as the abscissa, and
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FiG. 2. Comparison between the evolutionary rate (ky; —) and
the effectively neutral mutation rate (ve; - --). -----, Mutation rate v,’,
the rate of occurrence of mutations whose selective disadvantage is
less than 1/(4N,). For all curves, 8 = 0.5.
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assuming v = 2 X 1076, 8 = 0.5, and 5’ = 0.001. In the same
figure, the effectively neutral mutation rate v, is plotted by a
broken curve for the same set of parameters. Because

S (G + 1+ R)yF-1~ (1 +R)-6-1 + f " (O + R)-8-1dA
j=0 1.5
=(1+R) A1+ 6(1.5+R)H5 [9]
Eq. 7 may be approximated by
kg = oRA[B-(1 + R)8-1 + (1.5 + R)]. [10]

This approximation gives about 17% overestimation for 8 = 0.5
and N,s’ = 1, but it is accurate enough for most practical pur-
poses. From this we can easily show that, at the limit of either
4N,s’ — 0 or § — 0, we get

kg =0, (11]

which is a well-known result for strictly neutral mutations (4).
We can also show that, for 4N,§ > 1,

kg ~ 0[B8+1/28 + (B/3)8)/(2N.5")°. (12]
Comparison of this with Eq. 3 suggests that, roughly speaking,
we have

kg ~ v, (13]

Rough agreement of k, (solid curve) and v, (broken curve) may
be seen in Fig. 2, in which v,’ (the rate of occurrence of
mutations whose s’ value is less than 1/4N, ) is also plotted by
a dotted curve for the same set of parameters as used for the
other two curves. Thus, Eq. 13 may be regarded as an extension
of Eq. 11. In the case of 8 = 0.5 as illustrated, the rate of evo-
lution per generation is inversely proportional to v'N, when
Ng§’ is large.

MEAN HETEROZYGOSITY

Let H,, be the expected number of heterozygous sites. Then,
as shown in ref. 10 (see equation 15’ therein), we have, for a

given value of s/,

8Nv 1

H, =—Y|,-—
"7 oy (“ 2N)’ (14)

in which u is given by Eq. 6. This can also be expressed as

‘ e4Nes’ — 1 — 4N,s’

H, =8N, :
n = 8Nev 4N,s’(e4Nes’ — 1)
© (4N & s
=8N Y L Y gmiNes, 15
Y56+ DI 3l

Thus the mean number of heterozygous sites, when s’ follows
the T" distribution 1, is

H, = j; H,f(s")ds
e Ti+B8) & . —i—

= 8N,vR”? _— R)™i-8, 1
<® ‘gi T'(B)iE + 1)! jgl (7 +R) (16]
in which R = $/(4N.§’). Then, if we introduce the approxi-
mation

F G+ R (LR 4 [+ RI-d)

j=1 ~

=(1+R)"*" P+ (15+R*F/i+ B-1),

Eq. 16 becomes

g = gl
Hu = 8NeoR™ | 3 T80 + 1
= Ti+B-1)

* 5 T@G + 1)

F(i + ﬂ))' (l + R)_‘_ﬂ

15+ R)H—ﬂ]. (17]
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In the special case of § = 1, this reduces to
H = 8N20[ 1

n 5 1—+—§—,+loge(l+S)
1,1 1+ 055’
+[z+ =] log, 22
(2 s') loge T 1.5S']’ (18]
in which §" = 4N,¥".
In order to obtain a simpler expression for Eq. 17 for the case
0 < <1, we start from the following formal expression.

i ala=1)...(a=n+ 1)

n=0 n!
Letting o = — and substituting —x¢ for x in this formula, and
then integrating both sides of the resulting equation with respect
to t over the interval (0, 1), we get

i BB+ 1)...8+ n—l)xn+l=l—(l—x)l—ﬂ.
Jr (n+ 1) 1-8

=1+ x> [19]

(20]

Next, substituting x¢ for x in Eq. 20, and integrating both sides
of the resulting equation with respect to ¢ over the interval (0,
1), followed by putting n =i — 1, we have

= TG+ 8- 1)x¢+1-_- x  1-Q-xpF
=1 T(B)i + 1) 1-8 (1-82-8)
Finally, if we substitute x~! for x in this equation and then
multiply 278 through both sides we get
2T+ B=1) I
=1 T'(B) +1)! 1-8
x2B —(x —1)28
- (21
a-pe-p A
Going back to Eq. 20, we note that with a slight modification
this may be expressed as

= TG@+p8) , xl—-x"1(1—x)F

x 3
=0 T'(B)(i + 1)! 1-8
Substituting ! for x in this equation, and after some re-
arrangements, we get

o LG+p) g xF-G-1F
=1 T(B)( + 1)! 1-8
Applying Eq. 22 withx =1 + R and Eq. 21 withx = 1.5+ R
to the right hand side of Eq. 17, we obtain
— 1-8 1-8 _ R1-8
H, = 8N.0R? {(1 R4 (llf ; R)""-R
(L5 + R)2~F — (0.5 + R)*A]
1-pge-8 I
in which R = 8/(4N5’). In the limiting situation either for 8
— 0 or s’ — 0, this equation reduces to H, = 4N,v, which
agrees with the result obtained in ref. 10 for strictly neutral
mutations.
Let h. be the expected heterozygosity of the gene under

consideration. Then, assuming that different sites behave in-
dependently, we have '

—x78, [22]

- Q+R)#- (23]

he=1-¢7Hn, (24)

because this represents the probability that the gene is hetero-
zygous at least in one of the sites. In Fig. 3, the expected het-
erozygosity is shown as a function of N, for various parameter
values (3 and §’) assuming v = 2 X 10~%. Note that as compared
with the situation in which all the mutations are neutral (8 —
0), a case such as 8 = 0.5 and 5" = 0.001 is interesting because
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FI1G. 3. The mean heterozygosity as a function of the effective
population size for various combinations of parameters, 8 and 5, as-
suming the mutation rate v = 2 X 1078,

of slow rate at which heterozygosity increases as N, gets large.
In the same figure, the dotted line represents h, = 1 — 1/(1 +
8N,v)1/2, the heterozygosity expected under the stepwise
mutation model (12). Similarly, the broken line represents h.*
=1-1/(1 + 8N.v.)"/2 in which v, is the effectively neutral
mutation rate with 8 = 0.5 and 5 = 0.001. In all these cases the
mutation rate v = 2 X 1078 is assumed.

SLIGHTLY ADVANTAGEOUS MUTATIONS

To make our analysis complete, let us investigate how the ev-
olutionary rate is influenced by assuming that a certain fraction
of mutations are advantageous. Let v, be the rate of occurrence
of advantageous mutations, and assume that the selection
coefficient s for such a mutant follows a I" distribution with the

mean § and the parameter +;
fals) = ave=2ss7=1/T'(y), (25]

in which @ = y/sand y > 0.

Noting that the probability of ultimate fixation of a single
mutant with selective advantage s (>0) isu = 2s(N,/N)/(1 —
e~ 4Nes) (see ref. 11, p. 426), the rate of evolution due to ad-

vantageous mutations is

kg = ﬁw 2Nv,uf,(s)ds

= 4N,05R7+1 Y (j + R)-7, 26]
=0

in which R = vy/(4N,5). This can be approxiﬁdted by
kg = 0{4N,5 + [v/(6N.5 + ). (27]

For N5 > 1, we have k ~ 4N, 5v,. This means that the rate of
evolution can become enormously high in a very large popu-
lation, k, being directly proportional to N,, contrary to actual
observations.

DISCUSSION

The distribution of selection coefficients of new mutations at
the neighborhood of strict neutrality was discussed by Crow (6)
and King (7). However, it was Ohta (8) who investigated
quantitatively the problem of “near neutrality” by assuming
a specific mathematical form of the distribution. In Ohta’s
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model, mutations are assumed to be deleterious and the selec-
tion coefficients against individual mutants follow an expo-
nential distribution. With this model, she showed that the level
of heterozygosity reaches an upper limit as N, increases,
whereas the rate of evolution per generation (k) in terms of
mutant substitutions is inversely proportional to the effective
population size N,. The present model assuming a I distribu-
tion of selective disadvantages of mutants among different sites
within a gene (or among different amino acid sites within a
protein) has an advantage over Ohta’s model in that it can ac-
commodate a much larger fraction of effectively neutral
mutations. Actually, Ohta’s model corresponds to § = 1, while
the assumption that all the mutations are neutral corresponds
to S — 0. It is likely that an intermediate parameter value such
as 8 = 0.5 (as depicted in Fig. 1) may be more realistic to de-
scribe the typical situation observed in natural populations. In
the case of 8 = 0.5, the rate of evolution per generation is in-
versely proportional to V'N,, if N5’ > 1;i.e., k; = 1/V'N, .
Thus the evolutionary rate per year is k; o 1/ (g\/fls , in which
g is the generation span in years. If g is inversely proportional
to V'N, among various organisms, then gv/N, is constant, and
therefore the evolutionary rate per year is constant, provided
that the mutation rate v per generation is constant (uriform)
among them. .

Note that in the present model those mutations that become
fixed in the population by random drift in the course of evo-
lution are restricted to effectively neutral mutations. The se-
lective disadvantage of such mutants is at most of the order of
1/(2N.), which means 1075 or less in many mammals. The
proportion of effectively neutral mutants decreases as the
population size increases. This is why the heterozygosity in-
creases much more slowly in the present model as compared
with the conventional model of neutral mutations (see Fig. 3).
The observations that the average heterozygosity is restricted
in most organisms to the range 0% to 20% have been used re-
peatedly as evidence against the neutral mutation theory (see
ref. 13). It is likely that this difficulty is resolved by the present
model if we assume in addition that a population bottleneck
occurs from time to time in all organisms in the course of evo-
lution, reducing their effective population sizes substantially
(14). Recently, Li (15, 16) investigated the amount of genetic
variability maintained in a finite population using the K allele
model incorporating two or three classes of mutations including
the neutral and slightly deleterious classes. Similarly, Maruyama
and Kimura (17) used a stepwise mutation model incorporating
two types of mutations, neutral and slightly deleterious, to in-
vestigate the same problem. The present model has a more
desirable feature of incorporating a continuous spectrum of
mutations conferring different fitnesses, but it does not take into
account the limited detection ability of electrophoretic methods.
At any rate, the present model can explain the observation made
by Ohta (18) that in both Drosophila and humans the propor-
tion of rare alleles is greater than what is expected under the
assumption that all the mutations are strictly neutral. This ob-
servation, if valid, will greatly reduce the utility of Ewens’
sampling theory (19), a point that was recently elaborated by
Li (20). In the examples illustrated in Figs. 2 and 3, we assume
the mutation rate 2 X 1076 per locus per generation. This value
is based on the results reported by Mukai and Cockerham (21)
for Drosophila melanogaster and by Nei (22) for humans and
the Japanese macaque. Recently, higher estimates of mutation
rates have been reported by Neel and Rothman (23) for tribal
Ameridians. .

As to the rate of molecular evolution, the present model with
v =2X1075, 3 = 0.5, and 5 = 0.001, as illustrated in Fig. 2,
seems to give realistic values; in mammals, N, = 10° may be
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a representative effective population size for many species
during evolution, and k ~ 10~7, as shown in Fig. 2, is not very
far from the typical rate, which is of the order 1.5 X 107 per
cistron per year (as represented by globins).

It is likely that the value of the parameter § is smaller in
mammals than in insects, because of higher physiological ho-
meostasis in the mammals. The possibility of more mutations
being neutral in higher forms such as mamrhals with advanced
homeostasis has been suggested by Kondo (24). Low physio-
logical homeostasis and frequent local extingtion of colonies
must be the main reason why the heterozygosity (or 1, minus
the sum of squares of allelic frequencies in haploid organisms)
does not go very high in organisms having immense apparent
population sizes such as neotropical Drosophila (25) and
Escherichia coli (26). The mathematical model proposed in this
paper represents my attempt to make the neutral mutation
theory more precise and realistic. The model assumes that
molecular evolution and polymorphism are caused by random
drift of very slightly deleterious but effectively neutral muta-
tions. In this respect, the present theory resembles Ohta’s theory
of slightly deleterious mutations (27-29). But there are some
important differences. Ohta (29) claims that, in very large
populations, the stable mutation—selection balance will be re-
alized with heterozygosity reaching the upper limit, while
molecular evolution should have stopped or at least have slowed
down. Then, fixation of mutants is mainly restricted to popu-
lation bottlenecks at the time of speciation. On the other hand,
I assume that, even in very large populations, alleles at inter-
mediate frequencies, as often found in Drosophila species (see
ref. 30, table II), represent effectively neutral mutations carried
by random drift and that evolution by drift is unlikely to be
stopped in these species. Finally, there is one biological problem
that we have to consider. Under the present model, effectively
neutral, but, in fact, very slightly deletérious mutants accu-
mulate continuously in every species. The selective disadvan-
tage of such mutants (in terms of an individual’s survival and
reproduction—i.e., in Darwinian fitness) is likely to be of the
order of 1075 or less, but with 104 loci per genome coding for
various proteins and each accumulating the mutants at the rate
of 1076 per generation, the rate of loss of fitness per generation
may amount to 10~7 per generation. Whether such a small rate
of deterioration in fitness constitutes a threat to the survival and

welfare of the species (not to the individual) is a moot point, but.

this will easily be taken care of by adaptive gene substitutions
that must occur from time to time (say once every few hundred
generations).
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