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Genomic surveys in humans identify a large amount of recent
positive selection. Using the 3.9-million HapMap SNP dataset, we
found that selection has accelerated greatly during the last 40,000
years. We tested the null hypothesis that the observed age distri-
bution of recent positively selected linkage blocks is consistent
with a constant rate of adaptive substitution during human evo-
lution. We show that a constant rate high enough to explain the
number of recently selected variants would predict (i) site het-
erozygosity at least 10-fold lower than is observed in humans, (ii)
a strong relationship of heterozygosity and local recombination
rate, which is not observed in humans, (iii) an implausibly high
number of adaptive substitutions between humans and chimpan-
zees, and (iv) nearly 100 times the observed number of high-
frequency linkage disequilibrium blocks. Larger populations gen-
erate more new selected mutations, and we show the consistency
of the observed data with the historical pattern of human popu-
lation growth. We consider human demographic growth to be
linked with past changes in human cultures and ecologies. Both
processes have contributed to the extraordinarily rapid recent
genetic evolution of our species.

HapMap � linkage disequilibrium � Neolithic � positive selection

Human populations have increased vastly in numbers during
the past 50,000 years or more (1). In theory, more people

means more new adaptive mutations (2). Hence, human popu-
lation growth should have increased in the rate of adaptive
substitutions: an acceleration of new positively selected alleles.

Can this idea really describe recent human evolution? There
are several possible problems. Only a small fraction of all
mutations are advantageous; most are neutral or deleterious.
Moreover, as a population becomes more and more adapted to
its current environment, new mutations should be less and less
likely to increase fitness. Because species with large population
sizes reach an adaptive peak, their rate of adaptive evolution over
geologic time should not greatly exceed that of rare species (3).

But humans are in an exceptional demographic and ecological
transient. Rapid population growth has been coupled with vast
changes in cultures and ecology during the Late Pleistocene and
Holocene, creating new opportunities for adaptation. The past
10,000 years have seen rapid skeletal and dental evolution in
human populations and the appearance of many new genetic
responses to diets and disease (4).

In such a transient, large population, size increases the rate
and effectiveness of adaptive responses. For example, natural
insect populations often produce effective monogenic resistance
to pesticides, whereas small laboratory populations under similar
selection develop less effective polygenic adaptations (5). Che-
mostat experiments on Escherichia coli show a continued re-
sponse to selection (6), with continuous and repeatable re-
sponses in large populations but variable and episodic responses
in small populations (7). These results are explained by a model
in which smaller population size limits the rate of adaptive
evolution (8). A population that suddenly increases in size has
the potential for rapid adaptive change. The best analogy to
recent human evolution may be the rapid evolution of domes-
ticates such as maize (9, 10).

Human genetic variation appears consistent with a recent accel-
eration of positive selection. A new advantageous mutation that
escapes genetic drift will rapidly increase in frequency, more quickly
than recombination can shuffle it with other genetic variants (11).
As a result, selection generates long-range blocks of linkage dis-
equilibrium (LD) across tens or hundreds of kilobases, depending
on the age of the selected variant and the local recombination rate.
The expected decay of LD with distance surrounding a recently
selected allele provides a powerful means of discriminating selec-
tion from other demographic causes of extended LD, such as
bottlenecks and admixture (9, 12).

The important reason for this increase in discrimination is the
vastly different genomic scale that LD-based approaches use
compared with previous methods (scales of millions of bases
rather than thousands of bases). LD methods use polymorphism
distance and order information and frequency to search for
selection, unlike all previous methods (9, 12). Previous methods,
therefore, have difficulty defining selection unambiguously from
other population architectures on the kb scale usually examined.
On the megabase (Mb) scale examined by LD approaches,
however, extensive modeling and simulations indicate that other
demographic causes of extensive LD can be discriminated easily
from those caused by adaptive selection (9). Further, current LD
approaches restrict comparisons to a set of frequencies and
inferred allele ages for which neutral explanations are essentially
implausible.

Previously, we applied the LD decay (LDD) test to SNP data
from Perlegen and the HapMap (13), finding evidence for recent
selection on �1,800 human genes. We refer to these as ascer-
tained selected variants (ASVs). The probabilistic LDD test
searches for the expected decay of adjacent SNPs surrounding a
recently selected allele. Importantly, the method is insensitive to
local recombination rate, because local rate influences the extent
of LD surrounding both alleles, while the method looks for LD
differences between alleles. Further, the method relies only on
high heterozygosity SNPs for analysis, exactly the type of data
obtained for the HapMap project.

The number of ASVs detected encompasses some 7% of
human genes and is consistent with the proportion found in
another survey using a related approach (12). Because LD
decays quickly over time, most ASVs are quite recent (14),
compared with other approaches that detect selection over
longer evolutionary time scales (15, 16). Many human genes are
now known to have strongly selected alleles in recent historical
times, such as lactase (17, 18), CCR5 (19, 20), and FY (21). These
surveys show that such genes are very common. This observation
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is surprising: in theory, such strongly selected variants should be
rare (2, 3). The observed distribution seems to reflect an
exceptionally rapid rate of adaptive evolution.

But the hypothesis that genomic data show a high recent rate
of selection must overcome two principal objections: (i) The
LDD test might miss older selection and (ii) a high constant rate
of adaptive substitution might also explain the large number of
ASVs. The first objection is addressed by recalculating the LDD
test on a 3-fold larger dataset, because higher SNP density is
needed to detect older selected alleles with comparable sensi-
tivity. We test the second objection by considering a constant
rate as the null hypothesis then deriving and testing genomic
consequences.

Results
Finding Old Alleles. The original Perlegen and HapMap datasets
were relatively small (1.6 million and 1.0 million SNPs, respec-
tively). The low SNP density limited the power of LD methods
to detect older selection events, particularly in high-
recombination areas of the genome (9). Likewise, a related study
of selection (12) was biased toward newer alleles by requiring
multiple adjacent SNPs to exhibit extended LD. Older selected
alleles, where LDD is more rapid, would be rejected with this
approach. Neither of those previous studies (9, 12) attempted to
quantitate the numbers of selected events over an extended time
frame, but were merely initial searches for recent extended LD
at individual alleles, the most sensitive method to detect recent
adaptive change. Both found abundant evidence for recent
selection.

Therefore, we have now recomputed the LDD test on the
newly released 3.9-million HapMap genotype dataset (13). By
varying the LDD test search parameters, we can now statistically
detect alleles with more rapid LDD (and hence older inferred
ages) (9). For all parameters used, the detection threshold was
set at an average log likelihood (ALnLH) � 2.6 SD (�99.5th
percentile) from the genome average. Again, this LDD threshold
is a stringent cutoff for the detection of genomic outliers,
because the high number of selective events are included in the
genome average (9). The probabilistic LDD test does not require
the calculation of inferred haplotypes (9), so it is not a daunting
computational task to calculate ALnLH values for the HapMap
3.9 million SNPs genotyped in 270 individuals: 90 European
ancestry (CEU), 90 African (Yoruba) ancestry (YRI), 45 Han
Chinese (CHB), and 45 Japanese (JPT).

This analysis uncovered only 12 new SNPs (in six clusters) not
originally detected in the CEU population (9) and 466 new SNPs
representing 206 independent clusters in the YRI population. A
total of 2,803 (CEU), 2,367 (CHB), 2,783 (JPT), and 3,486
(YRI) selection events were found. As noted (9), many inferred
selected sites have faster LDD in YRI samples (with older
coalescence times), resulting in lower background LD and more
previously unobserved variants. The denser HapMap dataset
provided better resolution of LDD (i.e., rapid decay can be
reliably detected from background LD only with high density).
The 3.9-million HapMap dataset discovered more ASVs, but
only an incremental increase in the CEU and a (�7%) increase
in YRI values. This finding indicates that most events (defined
by the LDD test) coalescing to ages up to 80,000 years ago have
been detected, and any ascertainment bias against older selec-
tion is very slight within the given frequency range.

Ancient selected alleles are also more likely to be near or at
fixation than recent alleles. Just as we excluded rare alleles, we
also excluded high-frequency alleles (i.e., �78%) in our age
distribution. But the number of such high-frequency alleles
provides another test of the hypothesis that the LDD test has
missed older events. We modified the LDD test to find these

high-frequency ‘‘near-fixed’’ alleles and found only 50 candi-
dates. Other studies have likewise found few near-fixed alleles
(22, 23). These studies also show that very few ASVs are shared
between HapMap samples; most are population-specific (9, 12).
In our data, only 509 clusters are shared between CEU and YRI
samples; many of these are likely to have been under balancing
selection [supporting information (SI) Appendix]. The small
number of near-fixed events and the small number of shared
events are strong evidence that the LDD test has not missed a
large number of ancient selected alleles.

Allele Ages. We used a modification of described methods (24–26)
to estimate an allele age (coalescence time) for each selected
cluster. We focused on the HapMap populations with the largest
sample sizes, which were the YRI and CEU samples. Similar results
were obtained for the CHB and JPT populations (data not shown).

Fig. 1 presents histograms of these age estimates. The YRI
sample shows a modal (peak) age of �8,000 years ago, assuming
25-year generations; the CEU sample shows a peak age of
�5,250 years ago, both values consistent with earlier work (9,
12). The difference in peak age likely explains why weaker tests
have found stronger evidence of selection in European ancestry
samples (27, 28), unlike the current study.

Rate Estimation. Using the diffusion model of positive selection
(29), we estimated the adaptive substitution rate consistent with
the observed age distribution of ASVs. For the YRI data, this
estimate is 0.53 substitutions per year. For the CEU data, this
estimate is 0.59 substitutions per year. The average fitness
advantage of new variants (assuming dominant effects) is esti-
mated as 0.022 for the YRI distribution and 0.034 for the CEU
distribution. Curves obtained by using these estimated values fit
the observed data well (Fig. 1). The higher estimated rate for
Europeans emerges from the more recent modal age of variants.
For further analyses, we used the lower rate estimated from the
YRI sample as a conservative value.

Predictions of Constant Rate. We can derive four predictions from
the rate of adaptive substitution, each of which refutes the null
hypothesis of constant rate:

1. The null hypothesis predicts that the average nucleotide
diversity across the genome should be vastly lower than
observed. Recurrent selected substitutions greatly reduce the
diversity of linked neutral alleles by hitchhiking or
pseudohitchhiking (30, 31). Using an approximation for site
heterozygosity under pseudohitchhiking (30, 32) we esti-
mated the expected site heterozygosity under the null hy-
pothesis as 3.5 � 10�5 (SI Appendix). This value is less than
one-tenth the observed site heterozygosity, which is between
4.0 and 6.0 � 10�4 in human populations (13, 33, 34).

2. Hitchhiking is more important in regions of low recombina-
tion, so the null hypothesis predicts a strong relationship
between nucleotide diversity and local recombination rate.
The null hypothesis predicts a 10-fold increase in diversity
across the range of local recombination rates represented by
human gene regions. Empirically, diversity is slightly corre-
lated with local recombination rate, but the relationship is
weak and may be partly explained by mutation rate (13, 35).

3. The annual rate of 0.53 adaptive substitutions consistent with
the YRI data predicts an implausible 6.4 million adaptive
substitutions between humans and chimpanzees. In contrast,
there are only �40,000-aa substitutions separating these
species, and only �18 million total substitutions (36). This
amount of selection, amounting to �1/3 of all substitutions,
or 100 times the observed number of amino acid substitutions,
is implausible.

20754 � www.pnas.org�cgi�doi�10.1073�pnas.0707650104 Hawks et al.
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4. The null hypothesis predicts that many selected alleles should
be found between 78% and 100% frequency. Positively
selected alleles follow a logistic growth curve, which proceeds
very rapidly through intermediate frequencies. Because se-
lected alleles spend relatively little time in the ascertainment
range, the ascertained blocks should be the ‘‘tip of the
iceberg’’ of a larger number of recently selected blocks at or
near fixation. For example, the ASVs in the YRI dataset have
a modal age of �8,000 years ago. Based on the diffusion
model for selection on an additive gene, ascertained variants
should account for only 18% of the total number of selected
variants still segregating. In contrast, 41% of segregating
variants should be �78%. Dominant alleles (which have a
higher fixation probability) progress even more slowly
(�78%), so that additivity is the more conservative assump-
tion. Empirically, few such near-fixed variants with high LD
scores have been found in the human genome (13). Modifying
the LDD algorithm to specifically search for high-frequency
‘‘fixed’’ alleles found only 50 potential sites, in contrast to the
�5,000 predicted by the constant rate model. Although it is
possible that the rapid LDD expected for older selected
alleles near fixation may not be detected as efficiently by the
LDD test, two other surveys have also found small numbers
of such events (22, 23). This difference of two orders of
magnitude is a strong refutation of the null hypothesis.

Population Growth. The rate of adaptive evolution in human
populations has indeed accelerated within the past 80,000 years.
The results above demonstrate the extent of acceleration: the
recent rate must be one to two orders of magnitude higher than
the long-term rate to explain the genomewide pattern.

Population growth itself predicts an acceleration effect, be-
cause the number of new mutations increases as a linear product
of the number of individuals (2), and exponential growth in-
creases the fixation probability of new adaptive mutations (37).
We considered the hypothesis that the magnitude of human
population growth might explain a large fraction of the recent
acceleration of new adaptive alleles. To test this hypothesis, we
constructed a model of historic and prehistoric population

growth, based on historical and archaeological estimates of
population size (1, 38, 39).

Population growth in the Upper Paleolithic and Late Middle
Stone Age began by 50,000 years ago. Several archaeological
indicators show long-term increases in population density, in-
cluding more small-game exploitation, greater pressure on easily
collected prey species like tortoises and shellfish, more intense
hunting of dangerous prey species, and occupation of previously
uninhabited islands and circumarctic regions (40). Demographic
growth intensified during the Holocene, as domestication cen-
ters in the Near East, Egypt, and China underwent expansions
commencing by 10,000 to 8,000 years ago (41, 42). From these
centers, population growth spread into Europe, North Africa,
South Asia, Southeast Asia, and Australasia during the succeed-
ing 6,000 years (42, 43). Sub-Saharan Africa bears special
consideration, because of its initial large population size and
influence on earlier human dispersals (44). Despite the possible
early appearance of annual cereal collection and cattle hus-
bandry in North Africa, sub-Saharan Africa has no archaeolog-
ical evidence for agriculture before 4,000 years ago (42). West
Asian agricultural plants like wheat did poorly in tropical sun and
rainfall regimes, while animals faced a series of diseases that
posed barriers to entry (45). As a consequence, some 2,500 years
ago the population of sub-Saharan Africa was likely �7 million
people, compared with European, West Asian, East Asian, and
South Asian populations approaching or in excess of 30 million
each (1). At that time, the sub-Saharan population grew at a high
rate, with the dispersal of Bantu populations from West Africa
and the spread of pastoralism and agriculture southward through
East Africa (46, 47). Our model based on archaeological and
historical evidence includes large long-term African population
size, gradual Late Pleistocene population growth, an early
Neolithic transition in West Asia and Europe, and a later rise in
the rate of growth in sub-Saharan Africa coincident with agri-
cultural dispersal (Fig. 2).

As shown in Fig. 3, the demographic model predicts the recent
peak ages of the African and European distributions of selected
variants, at a much lower average selection intensity than the
constant population size model. In particular, the demographic

Fig. 1. Age distribution of ascertained selected alleles. Each point represents the number of variants dated to a single 10-generation bin. Fitted curves are the
number of ascertained variants predicted by Eq. 2 under a constant population size and constant s� � 0.022 for YRI and s� � 0.034 for CEU. The distribution drops
to zero approaching the present, because all alleles have frequencies �22% today. The 2,965 (YRI) and 2,246 (CEU) selection ages shown have had 509 alleles
removed that are likely examples of ongoing balanced selection (SI Appendix). Including these alleles in the analysis does not change the overall conclusion of
acceleration of selection.

Hawks et al. PNAS � December 26, 2007 � vol. 104 � no. 52 � 20755
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model readily explains the difference in age distributions be-
tween YRI and CEU samples: the YRI sample has more variants
dating to earlier times when African populations were large
compared with West Asia and Europe, whereas earlier Neolithic
growth in West Asia and Europe led to a pulse of recent variants
in those regions. The data that falsify the constant rate model,
such as the observed genomewide heterozygosity value and the
probable number of human–chimpanzee adaptive substitutions,
are fully consistent with the demographic model.

Discussion
Our simple demographic model explains much of the recent
pattern, but some aspects remain. Although the small number of
high-frequency variants (between 78% and 100%) is much more
consistent with the demographic model than a constant rate of
change, it is still relatively low, even considering the rapid
acceleration predicted by demography. Demographic change
may be the major driver of new adaptive evolution, but the
detailed pattern must involve gene functions and gene–
environment interactions.

Cultural and ecological changes in human populations may
explain many details of the pattern. Human migrations into
Eurasia created new selective pressures on features such as skin
pigmentation, adaptation to cold, and diet (25, 26, 28). Over this
time span, humans both inside and outside of Africa underwent
rapid skeletal evolution (48, 49). Some of the most radical new
selective pressures have been associated with the transition to
agriculture (4). For example, genes related to disease resistance
are among the inferred functional classes most likely to show
evidence of recent positive selection (9). Virulent epidemic
diseases, including smallpox, malaria, yellow fever, typhus, and
cholera, became important causes of mortality after the origin
and spread of agriculture (50). Likewise, subsistence and dietary
changes have led to selection on genes such as lactase (18).

It is sometimes claimed that the pace of human evolution
should have slowed as cultural adaptation supplanted genetic
adaptation. The high empirical number of recent adaptive
variants would seem sufficient to refute this claim (9, 12). It is
important to note that the peak ages of new selected variants in
our data do not reflect the highest intensity of selection, but
merely our ability to detect selection. Because of the recent
acceleration, many more new adaptive mutations should exist
than have yet been ascertained, occurring at a faster and faster
rate during historic times. Adaptive alleles with frequencies
�22% should then greatly outnumber those at higher frequen-
cies. To the extent that new adaptive alleles continued to reflect
demographic growth, the Neolithic and later periods would have
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Fig. 2. Historic and prehistoric population size estimates for human populations (SI Appendix). Key features are the larger ancestral African population size
and the earlier Neolithic growth in core agricultural areas.

Fig. 3. Tip of the iceberg. Both the demographic and constant-rate models
can account for the age distribution of ascertained variants (CEU data shown),
but they differ greatly in the expected number of variants above the ascer-
tainment frequency (fixed or near-fixed). The demographic model predicts a
low long-term substitution rate and few alleles �78%, consistent with the
observed data.

20756 � www.pnas.org�cgi�doi�10.1073�pnas.0707650104 Hawks et al.
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experienced a rate of adaptive evolution �100 times higher than
characterized most of human evolution. Cultural changes have
reduced mortality rates, but variance in reproduction has con-
tinued to fuel genetic change (51). In our view, the rapid cultural
evolution during the Late Pleistocene created vastly more op-
portunities for further genetic change, not fewer, as new avenues
emerged for communication, social interactions, and creativity.

Materials and Methods
The 3.9-million HapMap release was obtained from the International HapMap
Project website (www.hapmap.org). The LDD test (9) was applied to all four
HapMap population datasets. Briefly, by examining individuals homozygous
for a given SNP, the fraction of inferred recombinant chromosomes (FRC) at
adjacent polymorphisms can be directly computed without the need to infer
haplotype, a computationally daunting task on such large datasets. The test
uses the expected increase with distance in FRC surrounding a selected allele
to identify such alleles. Importantly, the method is insensitive to local recom-
bination rate, because local rate will influence the extent of LD surrounding
all alleles, while the method looks for LD differences between alleles. By using
a large sliding window (ranging from 0.25 to 1.0 Mb in the current study), and
by explicitly acknowledging the expected LD structure of selected alleles, the
LDD test can distinguish selection from other population genetic/demo-
graphic mechanisms, resulting in large LD blocks (9).

A modification of the LDD test was conducted on the CEU and YRI datasets, to
find selected alleles near fixation. Unlike the normal LDD test, all SNPs �78%
frequency (the cutoff used for primary analysis of this data) were queried, using
the same sliding windows as the normal test. Unlike the standard test, however,
the requirement that the alternative allele be no more than 1 SD from the
genome average was not implemented (9). Ninety-three clusters were identified
in the CEU population and 85 were identified in the YRI population (with 65
overlaps), a total of 113 fixed events. Unlike normal LDD screens (9), half of these
observedfixedeventsdeterminedby long-rangeLDwere inextremecentromeric
or telomeric regions, which have no recombination or high recombination,
respectively (13, 52). The interpretation of extended LD in these regions is
ambiguous, therefore, because low recombination maintains large LD blocks
(centromeres), and well documented high telomere–telomere exchange homog-
enizes these regions (52). Removing these centromeric and telomeric regions in
which LD is likely to be the result of mechanisms different from selection yields
�50 regions of potential fixation.

Clustering. The LDD test produces ‘‘clusters’’ of SNPs with the signature of
selection, because of the extensive LD surrounding these alleles (9). Each
cluster is likely to represent a single selection event, and hence we have
attempted to minimize potential overcounting by cluster analysis. Using a
simple nearest-neighbor technique, we assign a 10-kb radius to each selected
SNP. Each pass through the data produces a new set of centroids, and cluster
membership is reassigned to the nearest centroid. A SNP that lies �20 kb away
from the nearest centroid is considered a new cluster, with it being the sole
member. Using larger window sizes (up to 100 kb) reduces the number of
independent clusters (by approximately half), however, at the cost of ‘‘fusing’’
likely independent events (data not shown). We believe the 10-kb window,
therefore, is a conservative first-pass clustering of the observed selection
events.

Each selected SNP identified by the LDD test was sorted and mapped to its
physical location on human chromosomes (University of California Santa Cruz
Human Genome 17). We iterate through the SNP list, starting with the most
distal, and a SNP and its closest neighbor (within 10 kb radius) are clustered
together with a new centroid (average) i computed. To be included as part of
the ith cluster, the next SNP on the sorted SNP list must fall within 20 kb of the
ith cluster. If it is within 20 kb of both an upstream and downstream cluster,
to be integrated in the ith cluster it must have a distance to the ith centroid
closer than the next closest centroid (i � 1). Otherwise, a new centroid and
cluster is initiated. This task is repeated for all SNPs identified by the LDD test.

Allele Age Calculations. Coalescence times (commonly referred to as allele
ages) were calculated by methods described (24–26). Briefly, information
contained in neighboring SNPs and the local recombination frequency is used
to infer age. The genotyped population is binned (at the SNP under inferred
selection, the target SNP) into the major and minor alleles (9). While every
neighboring SNP gives information on the age of the target SNP, a single
recombination event carries all of the downstream neighbors to an equal or
higher FRC. Hence, our algorithm moves away (positively and negatively) from
the target SNP and computes allele age only when a higher FRC level is reached
in a neighboring SNP. A single neighboring SNP with no neighbors within 20

kb is not used for computation. This method is consistent with the theoretical
and experimental expectations of LDD surrounding selected alleles (9).

For neighboring SNPs, allele age is computed by using:

t �
1

ln�1 � c	
ln� xt � y

1 � y� , [1]

where t � allele age (in generations), c � recombination rate (calculated at the
distance to the neighboring SNP), xt � frequency in generation t, and y �
frequency on ancestral chromosomes. This method is a method-of-moments
estimator (24), because the estimate results from equating the observed
proportion of nonrecombinant chromosomes with the proportion expected if
the true value of t is the estimated value. It requires no population genetic or
demographic assumptions, only the exponential decay of initially perfect LD
because of recombination. Estimates are obtained until FRC reaches 0.3, to
avoid allele age calculations of lower reliability. We assume the ancestral
allele is always the allele with neutral or genome average LDD ALnLH scores
(9). Average regional recombination rates were obtained by querying data
from ref. 53 in the University of California Santa Cruz database (http://
genome.ucsc.edu). Regions with �0.1 cM/Mb average recombination rate
were excluded. All allele age estimates are averages of the individual calcu-
lations at the target SNP (26).

Estimating the Rate of Adaptive Substitutions. Under the null hypothesis of a
constant rate of adaptive substitution, the age distribution of ASVs can
estimate the mean fitness advantage (s�) of new selected variants. The empir-
ical distribution of fitness effects of adaptive substitutions is not known. On
theoretical grounds, this distribution is expected to approximate a negative
exponential (3). Other studies have assumed this distribution or a gamma
distribution with similar shape (54–56), and selected mutations in laboratory
organisms appear to fit this theoretical model (57, 58). In these expressions, s
is the selection coefficient favoring a new mutation, and s� is the mean
selection coefficient among the set of all advantageous mutations. We assume
that adaptive alleles are dominant in effect, which allows the highest fixation
probability (59) and the most rapid increase in frequencies and is therefore
conservative (less dominance requires a higher substitution rate to explain the
observed distribution). The value of s� is not known, and we are concerned with
finding the single value that creates the best fit of the population size
prediction to the observed data. We assumed a negative exponential distri-
bution of s, in which Pr[s] � e�s/s�. The number of ascertained new adaptive
variants originating in any single generation t is given by the equation:

nt, asc � 4 Nt� �
a

b

se�s�s� ds. [2]

Here, � is the rate of adaptive mutations per genome per generation, and Nt

is the effective population size in generation t. This integral derives from the
expectation of adaptive mutations in a diploid population (here, 2N�) multi-
plied by the fixation probability 2s for each, again assuming dominant fitness
effect. Under the null hypothesis, the population size Nt is constant across all
generations, so the expected number of new adaptive mutations (ascertained
and nonascertained) is likewise constant.

We considered the range of s between value a, yielding a current mean
frequency of 0.22, and value b, yielding a current mean frequency of 0.78, as
derived from the diffusion approximation for dominant advantageous alleles
(60). The parameter � is constant in effect across all generations, while the
number of ascertained variants originating in each generation varies with the
range of s placing new alleles in the ascertainment range. We applied a
hill-climbing algorithm to find the best-fit value of s� for the empirical distri-
bution of block ages, allowing � to vary freely. With an estimate for s�, the rate
of adaptive mutations, �, can be estimated as the value that satisfies Eq. 2. This
value is also sufficient to estimate the expected number of substitutions per
generation, which is the value of the integral in Eq. 2 over the range 0 to
infinity (in our analyses, the vast majority had 0.01 � s �0.1). For the YRI data,
assuming dominant fitness effects, the resulting estimate of adaptive substi-
tution rate is 13.25 per generation, or 0.53 per year.
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