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Abstract

What sort of culture would evolve in an island colony of naive founders? This question cannot be 

studied experimentally in humans. We performed the analogous experiment using socially learned 

birdsong. Culture is typically viewed as consisting of traits inherited epigenetically, via social 

learning. However, cultural diversity has species-typical constraints1, presumably of genetic 

origin. A celebrated, if contentious, example is whether a universal grammar constrains syntactic 

diversity in human languages2. Oscine songbirds exhibit song learning and provide biologically 

tractable models of culture: members of a species show individual variation in song3 and 

geographically separated groups have local song dialects 4,5. Different species exhibit distinct 

song cultures6,7, suggestive of genetic constraints8,9. Absent such constraints, innovations and 

copying errors should cause unbounded variation over multiple generations or geographical 

distance, contrary to observations9. We asked if wild-type song culture might emerge over 

multiple generations in an isolated colony founded by isolates, and if so, how this might happen 

and what type of social environment is required10. Zebra finch isolates, unexposed to singing 

males during development, produce song with characteristics that differ from the wild-type song 

found in laboratory11 or natural colonies. In tutoring lineages starting from isolate founders, we 

quantified alterations in song across tutoring generations in two social environments: tutor-pupil 

pairs in sound-isolated chambers and an isolated semi-natural colony. In both settings, juveniles 

imitated the isolate tutors, but changed certain characteristics of the songs. These alterations 

accumulated over learning generations. Consequently, songs evolved toward the wild-type in 3–4 

generations. Thus, species-typical song culture can appear de novo. Our study has parallels with 

language change and evolution12,13. In analogy to models in quantitative genetics14,15, we 

model song culture as a multi-generational phenotype, partly encoded genetically in an isolate 

founding population, influenced by environmental variables, and taking multiple generations to 

emerge.
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Young male zebra finches develop individually distinct song by imitating adult males16. 

The adult wild-type (WT) song includes stereotyped syllables repeated in fixed order (song 

motifs, Fig. 1a) in both wild and domesticated zebra finch colonies. Birds deprived of song 

during vocal development, develop a less structured isolate (ISO) song with more noisy, 

broadband notes and high pitch upsweeps11 (Fig. 1b). ISO syllables are often prolonged, 

monotonic or stuttered, and the songs appear to have an irregular rhythm. Despite these 

anomalies, young zebra finches readily imitate songs of adult isolates17 even in the presence 

of WT adults11.

We quantified the differences between WT and ISO songs over three time-scales. At the 10 

ms time-scale, we used spectral frame features (e.g., frequency modulation; Supplementary 

4a). Over the 10–100 ms time-scale, we used the correlation time of the spectral shape, 

termed Duration of Acoustic State (DAS, Supplementary 4b). At even longer (200–1000 ms) 

time-scales, we used measures of song rhythm (Supplementary 4d)18. Feature probability 

distributions across birds differed between ISO and WT (Fig. 1c–e). ISO songs had lower 

frequency modulation, longer durations of acoustic state, and less structured rhythms.

These distributions provide a high-dimensional song phenotype for each bird. We reduced 

the dimensionality by applying Principal Component Analysis (PCA) to the collection of 

feature distributions of all birds (WT & ISO), and retained the first two principal 

components (PCs) to obtain two-dimensional song phenotype values (Supplementary 4e). 

PCs at all three time-scales show separable clusters for ISO and WT songs along a 

continuum (Fig 2a–c). The mean values of the first PC were significantly different between 

ISO and WT at all time-scales of song structure (p<0.001, t-tests, nWT=52 birds, niso=17 

birds, FDR adjusted, Supplementary 5). We found that these differences are largely an 

outcome of tutoring deprivation and not of social isolation (Supplementary 3f).

To examine the imitation of isolate songs, we trained 13 juvenile birds (pupils) by isolate 

tutors one-to-one in a sound-isolated chamber. This allowed us to control genetic 

relatedness, and to minimize social effects, e.g., to eliminate feedback from female listeners. 

Four isolate tutors, with songs stable over the course of tutoring, were used 2–4 times to 

train unrelated pupils. We projected the feature distributions of the pupils on the PCs derived 

earlier from the WT/ISO data (Fig. 2a–c), and displayed vectors connecting each ISO tutor 

to his pupils (Fig. 2d–f). As shown, most of these vectors point in the direction of the WT 

cluster, indicating a shift toward WT features in pupils of ISO tutors. The mean values of the 

first PC for the first generation pupils differed significantly from both ISO and WT means 

for the spectral-frame features and for DAS (p=0.018-0.001, n=13), but not for rhythm. 

Feature distributions of most individual pupil songs were closer to WT songs than were their 

tutor’s songs (12/13 at at least one time-scale, 10/13 at all time-scales, FDR 

significance=0.01, binomial test, n=52, supplementary 5d).

Although pupils typically imitated all of the tutor syllables20 and did not invent new 

syllables (Supplementary 2), pupil songs deviated consistently from tutor songs. Fig. 2g 

presents an example where a long ISO syllable (red bar, mean duration=367ms, s.d.=29ms) 

was copied by a pupil, but was shortened by about 30% (mean=243ms, s.d.=7.6ms). Across 

all the syllables and all pupils, the durations of pupil syllables accurately matched those of 
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the corresponding ISO tutor syllables for syllables shorter than 230ms (Fig. 2h, r, 2=0.98, 

slope=0.97, n=20 syllables). Copies of longer ISO syllables, however, were shorter than the 

originals (r2=0.84, slope=0.56, n=11 syllables). Across birds, the ratio between the longest 

and shortest syllable within a bout was significantly smaller in pupils compared to their ISO 

tutors (p<0.01 n=13, Wilcoxon sign test, Supplementary 4c). Overall, the range where 

durations of ISO syllables were accurately copied is similar to the range of WT syllable 

durations (25–75 percentile range = 67–180ms, n=52 WT birds). In addition, pupils only 

copied the abundance (relative frequency) of syllables when it was within the WT range (up 

to about 30%). In cases where one syllable dominated the ISO song (Fig 2i), pupils 

decreased its abundance to 20–30% (Supplementary Fig. 5), thereby creating more 

structured song motifs.

Imitation of spectral features, as judged by the first PC of the feature distribution, was also 

biased: linear regression analysis of pupil versus tutor yielded a nonzero intercept and a 

slope slightly less than one (Fig 2j). The equality line, corresponding to faithful copying 

(pupil=tutor, dashed blue line), was rejected in favor of the alternative hypothesis 

represented by the linear fit shown in red (P<0.001, likelihood ratio test, n=13). Note that 

imitation that was inaccurate but unbiased would have only increased the spread around the 

equality line.

Because the songs of ISO-tutored birds differed significantly from both their respective ISO 

tutors and WT, we examined whether recursive tutoring would cause further progression 

toward WT over multiple generations. We used four of the first-generation pupils as tutors 

of a second generation of unrelated pupils, and continued recursively over 2–5 generations 

(Fig. 3a). Similarity to WT songs increased over 3–4 generations, as can be appreciated from 

the audio in Supplementary 1 and the three examples of multiple generations of recursive 

tutoring in Fig. 3b. In the first example, both ISO syllables become shorter in the songs of 

the first and second generation pupils (blue and red rectangles), but the second syllable is 

also differentiated into three distinct notes. The middle panel shows spectral and temporal 

differentiation of syllables, and omission by the 3rd generation pupil. In the right lineage, the 

duration of the final syllable (red rectangle) decreased over two generations and then 

stabilized. The spectral structure, however, continued to change in the 3rd and 4th 

generations.

To judge if the imitation of ISO songs progressed toward WT song over multiple 

generations, we displayed vectors in the PC space (as in Fig. 2d–f) with each tutoring 

lineage labeled by a different color (Fig. 3c–e). As shown, the multi-generational trajectories 

penetrate more deeply into the WT cluster (purple shading). Direct comparisons across first 

and later generation pupils reach significance only for DAS (p=0.02), but multi-generational 

comparisons suggest further progression toward WT for all song traits. For spectral frame 

features, we found that the first principal component of song features changes monotonically 

toward WT over generations. Its mean values for ISO, first generation, later generations, and 

WT songs were 1.3, 0.3, 0.03, −0.4 respectively. First PC values for later generation songs 

were significantly different from ISO song (p<0.005, t-test, n=8 for later generations) but 

not from WT songs (p=0.17). For DAS, first PC values also decreased monotonically with 

generations: 1.1, 0.3, 0.02, −0.3. Higher generation songs were significantly different 
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(p<0.01) from both WT and ISO, suggesting that WT approximation was not complete. For 

rhythm, first PC values also decreased monotonically with generations: 4.1, 2.2, 1.4, −2, and 

differences from WT and ISO were marginally significant (p=0.02, 0.056 respectively).

Although the one-to-one training provided a well defined learning environment, the multi-

generational changes that would occur in a complex social setting may be more 

representative of natural evolutionary processes. Therefore, we established a semi-natural 

island colony (Supplementary 3d) starting with one of our isolate tutors and three unrelated 

females in a large sound chamber (Supplementary Fig. 1).

In this social situation, too, the isolate colony approached the WT cluster over a few 

generations (Fig. 4). To judge the transition toward WT clusters, we examined PC 

projections with the isolate tutor song marked as a red dot. Comparing the trajectory shown 

in Fig. 4e to that of Fig. 3b, right panel (originating from the same tutor), we see that the 

outcome in the colony is similar to that observed in one-to-one tutoring. Even though the 

outcome of the colony experiment can only be judged qualitatively, we find it remarkable 

that despite intense social interactions, female presence and mating competition, there were 

only mild differences between birds in the two conditions. In the colony, juveniles also 

imitated sibling syllables and female long calls, leading to more complex songs 

(Supplementary 1c). In contrast to one-to-one tutoring, the best progress toward WT song 

occurred in rhythm, perhaps because birds incorporated additional syllable types into their 

song motifs.

Our findings resemble the well-known case of deaf children in Managua, Nicaragua, 

spontaneously developing sign language21, as well as linguistic phenomena such as 

creolization. Models of language change and evolution12–14, which contain a 

developmental account of the language acquisition process, are germane to our study 

(Supplementary Model 3).

We further discuss our findings using a simple recursive model which motivated this study. 

PCs of feature distributions (Fig. 2) give us phenotypic measures of song. Consider the 

distribution of a quantitative phenotype P in the ISO population. Since some of the variation 

in ISO songs is heritable, we partition P into a genotypic and an environmental value P = G 

+ E, assuming an additive model for genetic variance22 VP=VG+VE.

We consider an Isolated Lineages Model, in which the environmental component of the 

pupil phenotype P(n+1) in the n+1’th generation is further divided into a portion E0(n+1) 

independent of the tutor, and a portion proportional to the tutor song phenotype c0P(n). We 

therefore have the recursion P(n+1) = G(n+1) + c0 P(n) + E0(n+1) [Eq. 1]. The partitioning 

of the phenotypic variance is analogous to the parental effects model in quantitative 

genetics1,23. In the one-to-one study, tutor and pupil genotypic values are approximately 

uncorrelated, and c0 may be estimated by regressing the pupil against the tutor (cf. Fig. 2j, c0 

= 0.86, s.d = 0.15). The literature on cultural transmission24,25 also contains models 

analogous to Eq. 1 and has similar implications. Half-sib or cross-fostering experimental 

designs26 should be useful for separating the genetic27 and learning-related components of 

song transmission in future studies28.
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Our one-to-one experimental design may be modeled using Eq. 1 by initializing 

P(1)=G(1)+E(1) for the ISO generation. The recursion then causes the distribution of 

phenotypic values to exponentially relax to an asymptotic “WT” distribution, the relaxation 

being rapid if c0 is close to 0. The largest changes occur in the first generation (consistent 

with our results). The case c0 =1 corresponds to a simple random walk V[P(n)]~√n, where 

the song phenotype would drift indefinitely (unbiased song copying with errors). The 

“copying bias” (1− c0) plays the role of a spring constant, confining the walker to a 

parabolic potential well. Notably, the WT variance in the model is a combination of the ISO 

variance and the learning parameter, emphasizing how ISO song and learning ability 

combine to produce WT song. Extensions of the model predict that both genetic relatedness 

between tutor and pupil and horizontal transmission alter the asymptotic “WT” distributions 

(Supplementary Model). Therefore we would expect our two designs to yield slightly 

different song cultures.

In a sense, the results of our study show that song culture is the result of an extended 

developmental process, a ‘multi-generational’ phenotype partly genetically encoded in a 

founding population and partly in environmental variables, but taking multiple generations 

to emerge. The functional significance of our findings remains open, i.e. whether WT 

females prefer the songs of multi-generation pupils to those of ISO tutors. Since our findings 

suggest that song culture is the result of an extended developmental process, it would be 

interesting to examine if changes in gene expression, neuronal reorganization or 

neurogenesis associated with song development show orderly multi-generational 

progression during the evolution of song culture.

METHODS SUMMARY

Animal care

All experiments were performed in accordance with guidelines of the National Institutes of 

Health and have been reviewed and approved by the IACUC of CCNY.

Experimental design

We used zebra finches (Taenyopygia guttata) from the CCNY breeding colony. Colony 

management and isolation procedures have been described previously29. Except for the 

colony experiment, all birds were kept either singly (isolates) or pair-wise (one-to-one 

tutored) in sound attenuation chambers (Supplementary 3e) from day 30 to 120 post-hatch. 

Wild-type songs (n=52) were obtained from birds raised in two well-established colonies. 

Isolates (n=17) were raised by their mothers from day 7–29 post-hatch and were kept in 

complete isolation from day 30 until day 120 or later. One-to-one tutored birds (n=13 and 8, 

for first and later generations, respectively), were randomly selected from 40 breeding pairs, 

and paired with one of 6 isolate tutors on day 30. For the colony setting, we made a sound 

isolation chamber from an old 20 cubic ft refrigerator (Supplementary Fig. 1). All birds in 

the colony (except for the 3 female founders) were the descendants of the founder male.
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Data analysis

All the analysis was performed using Matlab 7, except for spectral feature calculations, 

which were done using Sound Analysis Pro 2. Isolate song syllables are often prolonged and 

monotonic. To quantify this notion, we estimated the time interval where acoustic features 

remain highly correlated and named this feature duration of acoustic state (Supplementary 

4b). Rhythm spectrum18 was used to detect periodicity in song features at the syllabic and 

the song-motif levels (Supplementary 4d). We constructed song feature PCs by first 

computing cumulative frequency distributions (CDF) for each feature time-series 

(Supplementary Fig. 8). These CDFs were the input vectors for the Principal Component 

Analysis (Fig. 2a–c). Statistical tests are described Supplementary 5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Wild-type songs versus isolate songs
a, Spectral derivatives19 of two WT song bouts. Different syllable types are underlined in 

different colors. Syllables show stereotypical organization into song motifs and rapid 

acoustic transitions within syllables. b, Isolate song bouts. Some syllables are extremely 

long (Bird 4, yellow) and others are stuttered (Bird 3, yellow and blue). c, Mean distribution 

histogram of frequency modulation in WT birds (blue, n=52) versus ISO birds (red, n=17). 

Dotted lines represent 95% confidence intervals. d, Histogram of duration of acoustic state, 

demonstrating longer durations in ISO. e, Spectra of rhythm frequencies showing less 

structured rhythm in ISO. The dotted gray line marks the minimum frequency that we used 

for further analysis (0.5 Hz).
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Figure 2. Progression toward WT song in pupils of isolates
First two PCs constructed from a, spectral features; b, DAS; c, rhythm frequencies. Dots 

represent individual WT (blue, n=52) and ISO (red, n=17) birds. Bayes classification lines 

are shown in gray. Histogram (bottom) of PC1 in first-generation (black, n=13) pupils falls 

between WT and ISO. d–f, Same data as in ac. Arrows originate at the tutors and point 

toward pupils. Different colors represent different tutors. Purple shading indicates center of 

WT cluster. Numerals indicate the arrows corresponding to the songs in g and i. g–h, Biased 

copying of syllable durations. i, Biased copying of syllable abundance and emergence of 

song motif. Shaded rectangle: overlay of syllable B and its imitation, B′. j, Correlation 

between first PCs of pupil versus tutor, indicating biased imitation. Dashed red line 

represents 95% confidence band, and the dashed blue line is the identity line.
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Figure 3. Multi-generational progression toward WT song
a, Schematic diagram of the experimental paradigm. Pupils become tutors when they reach 

adulthood (day 120–140). b, Three examples of the songs of isolate tutors and the 

succeeding generations of learners. Blue and red boxes show individual syllable types that 

are altered by pupils. Long, monotonic syllables become shorter and more differentiated 

(left and right panels). Rarely, syllables were omitted (middle panel) in later generations of 

learners c–e, PCA of song features, state duration and rhythm spectra. As in Fig. 2d–f, 

arrows originate at the tutors and point toward pupils. The progression toward the WT cloud 

(purple ovals) continues over generations.
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Figure 4. Progression toward WT song in an isolated colony
a, Family relationships in the first 5 clutches based on behavioral observations. b–d, PCA of 

song features, state duration and rhythm (as in Fig. 2d–f). The colony founder is marked by 

red dot. Colors and symbols identify individuals in (a). Successive clutches approach the 

WT cloud (purple shading) in the song features, especially in rhythm frequencies. e, A long 

syllable that dominates the founder isolate song motif, and its imitations in successive 

clutches.
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