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Variation in memory 
for body movements 
across cultures
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There has been considerable 
controversy over the existence of 
cognitive differences across human 
cultures: some claim that human 
cognition is essentially universal [1,2],  
others that it reflects cultural 
specificities [3,4]. One domain of 
interest has been spatial cognition 
[5,6]. Despite the global universality 
of physical space, cultures vary 
as to how space is coded in their 
language. Some, for example, do not 
use egocentric ‘left, right, front, back’ 
constructions to code spatial  
relations, instead using allocentric 
notions like ‘north, south, east,  
west’ [4,6]: “The spoon is north of the 
bowl!” Whether or not spatial cognition 
also varies across cultures remains 
a contested question [7,8]. Here 
we investigate whether memory for 
movements of one’s own body differs 
between cultures with contrastive 
strategies for coding spatial relations. 
Our results show that the ways in 
which we memorize movements of  
our own body differ in line with 
culture-specific preferences for how to 
conceive of spatial relations.

It has previously been shown that 
members of different cultures differ 
not only in their language use, but 
also in their preferred strategies for 
memorizing object locations [4,6].  

Correspondences
 Object locations are routinely coded 
via interacting egocentric and 
allocentric neuronal representations 
[9], indicating a flexible system that is 
susceptible to cultural biases in the 
relative weighting of representations. In 
contrast, proprioceptive  
space — knowing where our hands and 
feet are — has a strongly egocentric 
organization in parietal lobe area 5 
combining visual and somatosensory 
inputs [10]. Given the rigid egocentric 
structure of the neuronal representation 
of the position of body parts, memory 
for body movements might be  
expected to work similarly across all 
humans. We tested whether  
cross-cultural differences are restricted 
to memorizing external spatial 
arrays, or whether they also hold for 
memorizing movements  
of ones own body. 

We tested two cultures with 
contrastive linguistic strategies coding 
spatial relations (see Supplemental 
Data for details): Germans, whose 
language preferentially codes  
space in egocentric terms, and  
the ≠Akhoe Hai||om (short: Hai||om), 
a semi-nomadic hunter-gatherer 
group of Northern Namibia, whose 
language preferentially codes space 
in allocentric terms [4–6]. Previous 
experiments have shown that memory 
for object location indeed differs 
between these two populations [4,5]. 

After a simple instruction (‘let’s 
dance!’) in the participant’s mother 
tongue, we positioned the child next 
to an experimenter (E) facing the 
same way in a closed room (Figure 1: 
Training). Then E demonstrated a 
simple dance, during which he would 
move his folded hands from one side 
of his body to the other in a right-left-
right-right (RLRR) sequence (LRLL 
for 50% of participants). Throughout 
the dance, E counted out loud from 
Figure1. Positions of experimenter (E) and participant (P) during the dancing procedure.
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Defensive tool 
use in a coconut-
carrying octopus
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The use of tools has become a 
benchmark for cognitive sophistication. 
Originally regarded as a defining 
feature of our species, tool-use  
behaviours have subsequently been 
revealed in other primates and a 
growing spectrum of mammals 
and birds [1]. Among invertebrates, 
however, the acquisition of items that 
are deployed later has not previously 
been reported. We repeatedly 
observed soft-sediment dwelling 
octopuses carrying around coconut 
shell halves, assembling them as a 
shelter only when needed. Whilst 
being carried, the shells offer  
no protection and place a  
requirement on the carrier to use 
a novel and cumbersome form of 
locomotion — ‘stilt-walking’.

To date, invertebrates have 
generally been regarded as lacking 
the cognitive abilities to engage 
in such sophisticated behaviours. 
Putative examples of tool use do exist 
among invertebrates — perhaps most 
convincingly in the form of the use of 
leaves or pellets of sand to collect and 
transport food in various ant  
species — but these behaviours have 
been regarded as distinct from tool 
use in higher animals on the grounds 
that they only occur in response to 
very specific stimuli [2]. This highlights 
a key feature of widely used functional 
definitions of tool use [3] — simple 
behaviours, such as the use  
of an object (or objects) as shelter,  
are not generally regarded as  
tool use, because the shelter is 
effectively in use all the time, whereas 
a tool provides no benefit until it is 
used for a specific purpose. This 
rules out examples such as the use of 
gastropod shells by hermit crabs, but 
includes situations where there is an 
immediate cost, but a deferred benefit, 
such as dolphins carrying sponges 
to protect against abrasion during 
foraging [4] and where an object is 
carried around in a non-functional form 
to be deployed when required [5].

The dramatic and complex 
colour and shape change abilities 
one to four in the mother tongue 
of the participants. E continued to 
demonstrate the movement sequence 
until participants could reproduce it 
by themselves. Then, E rotated them 
180 degrees around their own axis, 
and positioned himself behind them 
(Figure 1: Rotation 1). E asked the 
participants to ‘dance again’. 

After the participants performed,  
E rotated them back into their original 
orientation (Figure 1: Rotation 2). If 
participants coded a RLRR dance in 
egocentric coordinates they should 
produce a RLRR sequence after both 
Rotations 1 and 2. Alternatively, if 
participants coded a RLRR dance in 
allocentric coordinates they should 
produce a LRLL sequence after 
Rotation 1 and a RLRR sequence after 
Rotation 2 (see also Supplemental 
Movie 1). Any response that did not 
match one of these two patterns 
was coded as ‘other’. These were 
either mixed responses (RLRR, LRLL, 
LRLL) and/or failures to memorize the 
sequence (RLRR, LRLL, RLRL).

We tested 50 German and 35 Hai||om 
children between 4 and 12 years of age 
(German: M = 7;3; SD = 2;7; Hai||om: 
M = 7;8; SD = 2;0). There were 40 boys 
and 45 girls (German: 25 boys, 25 girls; 
Hai||om: 15 boys, 20 girls). German 
children produced 60% egocentric, 6% 
allocentric and 34% other responses. 
Hai||om children produced 20% 
egocentric, 54% allocentric and 26% 
other responses. This difference in 
response distribution is statistically 
significant (Fisher-exact, p < 0.0001). 
Extracting ‘other’ responses, German 
children produced 91% egocentric 
and 9% allocentric responses. Hai||om 
children produced 27% egocentric 
and 73% allocentric responses. 
These distributions were significantly 
different from each other (Fisher-exact, 
p < 0.0001) and different from chance 
(50%) in both populations (German: 
p < 0.0001, binomial test; Hai||om: 
p < 0.05, binomial test). The frequency 
of egocentric vs. allocentric responses 
did not correlate with age (German:   
p > 0.05, point-biserial; Hai||om:  
p > 0.05, point-biserial). The absence 
of an increase of locally dominant 
responses with age is surprising given 
previous research documenting an 
increase in cross-cultural differences 
with age [5]. Samples of younger 
children are needed to document the 
developmental trajectory of this task. 

In summary, we show that the ways 
in which we memorize movements 
of our own body differ in line with 
culture-specific preferences for how 
to conceive of spatial relations. These 
results support the view that, at least 
in some domains, cultural diversity 
goes hand in hand with cognitive 
diversity, and a cross-cultural 
perspective should play a central part 
in understanding how variable adult 
cognition is built from a common 
cognitive foundation. 

Supplemental Data
Supplemental data are available at http://
www.cell.com/current-biology/supplemental/
S0960-9822(09)01898-3. 
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