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Summary

The tendency to move in rhythmic synchrony with a musical
beat (e.g., via head bobbing, foot tapping, or dance) is

a human universal [1] yet is not commonly observed in other
species [2]. Does this ability reflect a brain specialization for

music cognition, or does it build on neural circuitry that ordi-
narily serves other functions? According to the ‘‘vocal

learning and rhythmic synchronization’’ hypothesis [3],
entrainment to a musical beat relies on the neural circuitry

for complex vocal learning, an ability that requires a tight

link between auditory and motor circuits in the brain [4, 5].
This hypothesis predicts that only vocal learning species

(such as humans and some birds, cetaceans, and pinnipeds,
but not nonhuman primates) are capable of synchronizing

movements to a musical beat. Here we report experimental
evidence for synchronization to a beat in a sulphur-crested

cockatoo (Cacatua galerita eleonora). By manipulating the
tempo of a musical excerpt across a wide range, we show

that the animal spontaneously adjusts the tempo of its
rhythmic movements to stay synchronized with the beat.

These findings indicate that synchronization to a musical
beat is not uniquely human and suggest that animal models

can provide insights into the neurobiology and evolution of
human music [6].

Results and Discussion

Synchronization of movement to a musical beat develops
spontaneously in humans [7, 8] yet is not commonly observed
in other species, including domesticated animals (such as
dogs) that have lived with humans and their music for thou-
sands of years [2]. Musical beat perception and synchroniza-
tion (BPS) has several distinguishing features compared to
rhythmic entrainment in other species (e.g., the rhythmic chor-
using of certain katydids and frogs [9, 10]). For example, BPS
involves a periodic motor response to complex sound
sequences (not just pulse trains), can adjust to a broad range
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of tempi, and is crossmodal, with sound eliciting periodic
movement that is not necessarily aimed at sound production
[11]. BPS is thus an unusual form of rhythmic entrainment
and is the focus of a growing body of behavioral, neural, and
computational research [e.g., 12–16].

The spontaneous development and apparent species spec-
ificity of BPS make it reminiscent of how aspects of language
develop. Yet BPS does not appear to be a by-product of our
linguistic abilities: ordinary speech does not employ regularly
timed beats or elicit periodic movements from listeners
[3, 17]. Might BPS be a biological specialization for music,
reflecting natural selection for musical abilities in our species
[18, 19]? Or is it a consequence of brain circuitry that evolved
for other reasons [20]? According to the ‘‘vocal learning and
rhythmic synchronization’’ hypothesis [3], BPS relies on the
brain circuitry for complex vocal learning because (1) BPS
resembles vocal learning in that it involves special links
between the auditory and motor systems [4, 14] and (2) the
neural substrates of vocal learning and BPS appear to overlap
in the brain (e.g., in the basal ganglia and supplementary motor
areas) [5, 12, 21]. This hypothesis predicts that only vocal
learning species (such as parrots, dolphins, and seals) are
capable of BPS and that vocal nonlearners (e.g., dogs, cats,
and nonhuman primates) are not capable of BPS.

Motivated by this hypothesis, the current study investigated
BPS in a sulphur-crested cockatoo (Cacatua galerita eleonora)
named Snowball (Figure 1). Snowball came to our attention via
a YouTube video in which he moves rhythmically (including
head bobs and foot steps) in response to a pop song. Remark-
ably, the movements appeared well synchronized to the
musical beat, providing the first indication that BPS might
not be a uniquely human ability. However, two important
issues remained unresolved. First, with home videos it is not
possible to rule out imitation of human movement, which is
of particular concern with parrots because they have the
unusual ability to mimic nonverbal human movements [22].
Second, it was not clear whether Snowball could synchronize
to music across a broad range of tempi (a key feature of BPS).
To address these issues, we report here an experimental study
involving suppression of human movement and manipulation
of the musical tempo.

We used a 78 s excerpt of a song familiar to Snowball
(‘‘Everybody,’’ by the Backstreet Boys; tempo = 108.7 beats
per minute [bpm]) manipulated to create versions at 11
different tempi without shifting the pitch of the song: original
and 62.5%, 65%, 610%, 615%, and 620%. These versions
were presented in each of four sessions. Rhythmic movements
were coded from video, focusing on the timing of head bobs
(see Supplemental Data). The time of each bob was compared
to the time of the nearest auditory beat and assigned a relative
phase (e.g., a head bob coinciding with an auditory beat was
assigned a phase angle of 0, a bob 25% of the beat period
ahead of a beat was assigned a phase angle of 290�, a bob
25% of the beat period after a beat was assigned a phase
angle of 90�, etc.). Because visual inspection of the videos sug-
gested that there were periods of synchrony (‘‘synchronized
bouts’’) interspersed with periods where Snowball was
dancing but was not synchronized to the music, we used

mailto:apatel@nsi.edu


Current Biology Vol 19 No 10
828
a windowed analysis to determine the location and extent of
synchronized bouts in each trial. A synchronized bout (hence-
forth simply ‘‘bout’’) was defined as at least two adjacent over-
lapping windows of eight consecutive head bobs, with each
window exhibiting synchronization to the beat via the phase-
sensitive Rayleigh test with a criterion of p < 0.05 (equation 4.15
in [23]; this test requires that head bobs match the musical
tempo and be aligned in time with musical beats). Because
windows were overlapped by four beats, a bout consisted of
a minimumof12 successivehead bobs. For each trial withbouts,
the number of head bobs that were part of bouts was recorded.

Only trials in which Snowball showed sustained dancing
(number of head bobs R 50% of the number of beats) were
analyzed. There were 38 such trials, distributed across all 11
tempi, as shown in Table 1 (row 1). Bouts occurred in 22
(58%) of these trials, spanning 9 tempi ranging from 10%
slower to 20% faster than the original tempo (i.e., 97.8 to
130.4 bpm; Table 1, row 2). As is evident from Table 1, no bouts
occurred at the slowest two tempi, and most bouts occurred
at tempi faster than the song’s original tempo.

The 22 trials with synchronization had 101 head bobs on
average (SD 19). Within these 22 trials, a total of 33 bouts
were observed. The median bout length was 16 head bobs
and ranged from 12 to 36 consecutive bobs synchronized to
the beat. Figure 2 shows a histogram of head bob phase
angles relative to the beat (0 phase) during bouts. The mean
angle was 3.9� and was not significantly different from 0 (t =
1.6, p = 0.11, degrees of freedom = 543). Thus, on average,
head bobs during bouts were closely aligned to auditory beats,
which resembles the timing of human tapping to music [24].

Two bouts are illustrated in Figure 3, which shows Snow-
ball’s dance tempo during a trial with musical tempo =
130.4 bpm (i.e., 20% faster than the song’s original tempo).
Bouts are indicated by boxes around the tempo time series.
Across the 22 trials with synchronization, bouts accounted
for 25% of the head bobs in each trial on average (range =
10%–51%). The figure illustrates that bouts were interspersed
with periods in which Snowball was dancing more slowly or
quickly than the beat. Snowball’s pattern of occasional
synchronization during periods of sustained dancing may
resemble how young children (versus adults) synchronize to
music [25].

This pattern of occasional synchronization naturally raises
the question of whether Snowball simply dances rhythmically
(and with variable tempo) in response to music, with periods of
apparent synchronization occurring by chance. To test our
data against this null hypothesis, we performed a permutation
test in which each head bob time series was randomly paired
with a beat time series from a trial at a different tempo. A Monte
Carlo test involving 10,000 such simulated experiments re-
vealed that Snowball’s actual degree of synchrony is unlikely
to have occurred by chance (p = 0.002; see Experimental
Procedures).

It is notable that Snowball’s movements during synchroniza-
tion appear not to be simple copies of movements typically
found in the natural repertoire of sulphur-crested cockatoos.
For example, the male courtship display of sulphur-crested
cockatoos is brief and involves rhythmic head bobs (not obvi-
ously synchronized to auditory cues), side-to-side figure-eight
head movements, and ‘‘soft, chattering’’ vocalizations [26]. In

Figure 1. Snowball

Snowball, a male sulphur-crested cockatoo (Cacatua galerita eleonora)

investigated in the current study.

Table 1. Number of Experimental Trials in the Different Conditions

220% 215% 210% 25% 22.5% 0% 2.5% 5% 10% 15% 20%

Number of trials with

sustained dancing

2 2 2 3 4 5 4 4 4 4 4

Number of trials with

synchronized bouts

0 0 1 1 4 3 1 1 3 4 4

Percentages indicate tempo change from original song.

Figure 2. Circular Histogram of Head Bob Phases Relative to the Beat

Phase angles for all head bobs in synchronized bouts (n = 544). 0� indicates

head bobs coincident with the musical beat. Positive angles indicate bobs

that occur after the beat, whereas negative angles indicate bobs that occur

before the beat. The average phase angle of bobs is 3.94� (indicated by the

arrow) and is not significantly different from 0.
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Figure 3. Timing of Rhythmic Movements in

One Trial

Snowball’s instantaneous dance tempo during

an experimental trial in which the musical tempo

was 130.4 beats per minute (bpm) (gray hori-

zontal line), i.e., 20% faster than the original

song. (Instantaneous tempo was computed by

dividing each time interval between successive

head bobs into 60 s—e.g., an interval of 0.5 s

becomes an instantaneous tempo of 120 bpm.)

Black boxes indicate synchronized bouts, when

head bobs were synchronized with the musical

beat. At other times Snowball continued to

dance, but not at the musical tempo.
our study, we observed a variety of rhythmic gestures in addi-
tion to head bobs (including swaying the head and trunk from
side to side on every other beat), but we did not observe figure-
eight head movements or courtship-like vocalizations.

A natural question about these results is whether they can
be generalized to other parrots, or more broadly, to other vocal
learning species. Schachner and colleagues (in this issue of
Current Biology [27]) surveyed YouTube videos and found
that all species which appeared to move in synchrony with
a musical beat were vocal learners (n = 15, mostly parrots).
Although these findings are consistent with the vocal learning
hypothesis [3], there is a need for further experimental work
involving other species. Studies of nonhuman primates (such
as chimpanzees and macaques) are particularly important, in
that they are the closest living relatives of humans yet lack
complex vocal learning [28, 29] and should thus be incapable
of BPS according to the vocal learning hypothesis. It would
also be worth conducting experiments with species that
engage in rhythmic chorusing, to test the alternative hypoth-
esis that the origins of musical synchronization lie in chorusing
behavior rather than in vocal learning [18]. More generally,
future comparative work can help determine what neural abil-
ities are necessary foundations for BPS. In this regard, it is
important to note that vocal learning may be a necessary but
not sufficient foundation. For example, BPS may require the
neural circuitry for open-ended vocal learning (i.e., the ability
to imitate novel sound patterns throughout life) as well the
ability to imitate nonverbal movements, two evolutionarily
rare traits shared by parrots and humans [11, 22].

The discovery of synchronization to music in a nonhuman
animal shows that a fundamental aspect of music cognition is
shared with other species and provides valuable clues about
the neurological substrates of this aspect of music. The finding
also suggests the utility of developing animal models of move-
ment to music. Such models could have relevance to the study
of human movement disorders (including Parkinson’s disease),
symptoms of which have been shown to be alleviated by
moving with a musical beat [30, 31]. More generally, it appears
that comparative studies of other species can be a powerful
approach for gaining insight into the neurobiological and evolu-
tionary foundations of our own musical abilities [6, 17, 32].

Experimental Procedures

Participant

Snowball is a 12-year-old male sulphur-crested cockatoo (Cacatua galerita

eleonora) (family Cacatuidae), from the order Psittaciformes, a group of
animals known for their vocal learning skills and for living in complex social

groups [33, 34]. He was relinquished to author I.S. in August 2007. His

previous owner (PO) indicated that Snowball liked to dance to music, and

Snowball has since been observed dancing to a wide variety of songs. The

PO acquired him at a bird show when Snowball was 6, and Snowball’s expe-

rience with music prior to this is not known. The PO mentioned that soon after

he acquired Snowball, he noticed Snowball bobbing his head to the music of

the Backstreet Boys. (The PO felt that this was not done in imitation of human

movement.) Subsequently, the PO and his daughter began dancing with

Snowball using pronounced arm gestures, which may be the origin of Snow-

ball’s foot-lifting behavior while dancing. Snowball currently resides at Bird

Lovers Only Rescue Service, where the experiments took place.

Stimuli

Stimuli are described in the main text. Audacity public domain software

(version 1.2.5, ‘‘Change Tempo’’ effect) was used to create versions at

different tempi. These were checked by ear to ensure that they were free

of acoustic artifacts.

Procedures and Equipment

The study consisted of four video sessions conducted between January and

May 2008. Two humans familiar to Snowball (his owners) were present in the

room and recorded the video. A fifth session was recorded but was

excluded because of distraction caused by the presence of a new person

unfamiliar to Snowball.

During each session, Snowball was placed on the back of an armchair. A

variety of tempi were presented, typically by starting with the original tempo

and then moving between manipulated tempi in a step-like fashion, from

slow to fast, with occasional repeated trials. Short pauses were given

between trials. On each trial, Snowball was given verbal encouragement

to dance, but humans did not dance and remained at least 5 feet away. (In

sessions 1 and 2, author I.S. inadvertently bobbed her head to the beat in

a subtle fashion. This was suppressed in sessions 3 and 4 and did not affect

the results: during sessions 1 and 2, when I.S. bobbed her head slightly, 11

of 20 trials (55%) had bouts. During sessions 3 and 4, when I.S. suppressed

rhythmic movement, 11 of 18 trials (61%) had bouts, indicating that imitation

of human movement cues could not account for Snowball’s synchronization

to the beat. Hence, data from all sessions were combined for further anal-

ysis.) No training or food rewards were involved in this study: dancing began

and ended spontaneously when the music was turned on and off. Sessions

lasted about 30 min each and took place between 1 and 5 p.m.

Music was presented via Altec Lansing Series 5100 speakers connected to

a personal computer. Videos were taken with a Panasonic Mini DV camera

(NTSC format) mounted on a tripod, approximately 6 feet from Snowball. After

each session, the video was transferred to computer for analysis.

Data Analysis

Videos were segmented into individual trials, and each segment was dein-

terlaced to obtain 60 frame-per-second time resolution. (Deinterlacing

was not possible for session 2, which thus had 30 fps resolution.) Snowball’s

rhythmic movements were coded with the sound turned off and the coder

unaware of which condition the trial represented. Although several different

classes of rhythmic movements were observed, vertical head position was

found to be the most reliable rhythmic gesture. To study the timing of head
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bobs, the frame number was noted each time Snowball’s head reached

a locally minimal position in the vertical plane. (As a reliability check,

a second coder independently recoded four trials: 94.7% of frame numbers

were within 1/60th of a second of the original coder, and 99.6% were within

1/30th of a second).

Audio tracks were extracted for each trial, and beat times were deter-

mined with a beat tracking algorithm [35]. Rare periods when the beat track

was judged inaccurate were excluded from analysis (only w10 s at the end

of one trial). As described in the main text, each head bob within each trial

was assigned a phase angle relative to the closest auditory beat, and

synchronized bouts were identified via a windowed analysis. Use of the

phase-sensitive Rayleigh test ensured that our statistical test of synchrony

was sensitive to both the period and the phase of rhythmic movements with

respect to the musical beat.

Permutation Test

Because the experiment consisted of 38 trials across 11 different tempi

(Table 1, row 1), we randomly re-paired the head bob time series and beat

time series so that each head bob series was paired with a beat time series

at a different tempo, with the constraint that all 11 tempi were represented in

the permuted data. This created a simulated experiment of 38 trials, which

was analyzed for synchrony in the same way that we analyzed the original

data. Via this approach, we recorded the total number of bobs that were

part of bouts in each trial, yielding 38 values (i.e., one per simulated trial).

These numbers were summed to compute the total number of head bobs

synchronized with the beat across the simulated experiment. A Monte Carlo

test with 10,000 such simulated experiments resulted in a distribution of the

number of head bobs synchronized with the beat in each of the simulated

experiments. We compared this distribution to the total number of head

bobs synchronized to the beat in our actual data (544) and computed the

p value of our data as the proportion of simulated experiments that had

the same or higher number of synchronized head bobs. This proportion

was 0.002, indicating that our observed degree of synchrony is highly

unlikely to arise by chance.

Supplemental Data

The Supplemental Data include one movie and can be found with this article

online at http://www.cell.com/current-biology/supplemental/S0960-9822

(09)00890-2.
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Erratum

Experimental Evidence
for Synchronization to a Musical Beat
in a Nonhuman Animal

Aniruddh D. Patel,* John R. Iversen, Micah R. Bregman, and Irena Schulz

(Current Biology 19, 827–830; May 26, 2009)
In the version of this paper initially published online, row 2 of Table 1 listed incorrect numbers of trials in the different conditions.
The table has now been corrected online and in print. The authors regret this error.
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