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My interest: non-parametric reconstruction of dynamical
systems from the behavior they generate
Perspective: Yet another ex-physicist
∴ Social networks are “just” large coupled dynamical systems
Apologies in advance for social-scientific and graphological
naivete
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“If your friend Joey jumped off a bridge, would you jump
too?”
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2 yes: Joey infects you with a parasite which suppresses
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1 yes: Joey inspires you (social contagion or influence)
2 yes: Joey infects you with a parasite which suppresses

fear of falling (actual contagion)
3 yes: you’re friends because you both like to jump off

bridges (manifest homophily)
4 yes: you’re friends because you both like roller-coasters,

and have a common risk-seeking propensity (latent
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“If your friend Joey jumped off a bridge, would you jump
too?”

1 yes: Joey inspires you (social contagion or influence)
2 yes: Joey infects you with a parasite which suppresses

fear of falling (actual contagion)
3 yes: you’re friends because you both like to jump off

bridges (manifest homophily)
4 yes: you’re friends because you both like roller-coasters,

and have a common risk-seeking propensity (latent
homophily)

5 yes: because you’re both on it when it starts collapsing and
that’s the only way off (external causation)
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Wikipedia, s.v. “Tacoma Narrows Bridge (1940)”
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Are these distinctions with observational differences?
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Are these distinctions with observational differences?

1 Can’t experiment by pushing Joey off the bridge
2 Don’t want to impose strong parametric assumptions
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Are these distinctions with observational differences?

1 Can’t experiment by pushing Joey off the bridge
2 Don’t want to impose strong parametric assumptions

Manski (1993) suggests this is just not identifiable, but does not
quite settle the problem
Influence due to group average vs. individuals
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Contagion, Influence

Whether i does something at time t is well-predicted by
whether i ’s neighbors had already done it at t − 1

Diffusion of innovations
Infectious diseases
Not-obviously-infectious conditions (e.g., obesity) . . .

This can be due to influence or contagion
Analogy of ideas to diseases is very old: Pliny used it in 110 (Epistles X 96)

Can the same observational consequences can follow from
latent homophily?
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Notation:
Y (i , t) = does node i show condition/behavior at time t?
X (i) = latent persistent trait of i
Z (i) = other, manifest persistent traits
A(i , j) = whether there is an edge from j to i

We suppose that:
Y (i , t − 1) has a direct influence on Y (i , t)
X (i) has a direct influence on whether/when i adopts
Z (i) has a direct influence on Y (i , t) (possibly null)
Y (j , t − 1) may have a direct influence on Y (i , t), but only if
A(i , j) = 1
Homophily: X (i) and X (j) both directly influence A(i , j)
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X(i)

A(i,j)Y(i,t-1)

Y(i,t)

X(j)

Y(j,t-1)

Y(j,t)

Z(j)Z(i)
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Contagion Effects are Nonparametrically Unidentifiable

Informally:
1 Y (j , t − 1) is informative about X (j)
2 X (j) is informative about X (i) if i and j are neighbors
3 X (i) is informative about Y (i , t)
4 ∴ Y (i , t) 6 |= Y (j , t −1), even if there is no direct causal effect
5 ∴ Latent homophily is confounded with contagion
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More formally:
1 Y (i , t)← X (i)→ A(i , j) is a confounding path from Y (i , t)

to A(i , j)
2 Likewise Y (j , t − 1)← X (j)→ A(i , j) is a confounding path

from Y (j , t − 1) to A(i , j)
3 ∴ the direct effect of Y (j , t − 1) on Y (i , t) is not identifiable

(Pearl, 2009, §3.5, pp. 93–94)
Adding conditioning on Y (i , t − 1) and Y (j , t) does not remove
the confounding paths
Neither does adding conditioning on Z (i), Z (j)
Argument still goes through with time-varying edges (more
spaghetti)
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Getting Identifiability

Parametric assumptions can suffice
Better: condition on X ; or find Z which block paths from Y to X
Explicit modeling as in Leenders (1995); Steglich et al. (2004)
does both

X(i)

A(i,j)Z(i)

Y(i,t)

X(j)

Z(j)

Y(i,t-1) Y(j,t-1)

Y(j,t)
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The Argument from Asymmetry

Focus on unreciprocated edges, i → j , j 6→ i
Suppose Y (i , t)|Y (j , t − 1)) 6∼ Y (j , t)|Y (i , t − 1)
Doesn’t this argue for direct influence?
Considerable prima facie plausibility
Argument breaks down if senders and receivers have
systematically different values of X , with different local relations
to Y
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Toy Example

Ignore time-dependence; try to predict Y (i) from Y (j) and vice
versa when Aij = 1, Aji = 0
X (i) ∼ U(0, 1)
Edges form with probability ∝ logit−1(−3|X (i)− X (j)|)
i nominates j from among neighbors, ∝ logit−1(−|X (j)− 0.5|)
Y (i) = 10(X (i)− 0.5)3 +N (0, 0.1)
Results:

Y (i) is well-predicted from Y (j)
Nominees are disproportionately in the middle; i → j , j 6→ i
suggests i is more peripheral
For asymmetric pairs, regression of sender on receiver
differs from that of receiver on sender
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Making homophily and contagion look like causation

Long-term, hard-to-change social/economic status explains
more short-term, malleable cultural / political / consumer
variables
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Making homophily and contagion look like causation

Long-term, hard-to-change social/economic status explains
more short-term, malleable cultural / political / consumer
variables

Gellner: “Social structure is who you can marry,
culture is what you wear at the wedding.”
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What’s the evidence?

The stories sound good
Casual empiricism
Correlation/regression analyses; cultural choices are
predictable from social positions (e.g. Bourdieu (1984))

Probably even true a lot of the time
BUT usually ignores social networks and just looks at surveys
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X(i)

A(i,j)Y(i,t-1)

Y(i,t)

X(j)

Y(j,t-1)

Y(j,t)
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More Confounding

Direct influence of X (i) on Y (i , t) is confounded with contagion:

1 X (i) is a cue about who i ’s friends are, i.e. A(i , j)
2 ∴ X (i) is a cue about what i ’s friends think, Y (j , t − 1)

3 contagion: Y (j , t − 1) influences Y (i , t) if A(i , j) = 1
4 ∴ X (i) 6 |= Y (i , t) even if no direct influence
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Responsible Just-So Story-telling

These accounts are usually adaptationist/functionalist
At the very least they are causal accounts
We should really check them
Biology suggests: a neutral model

Include all the evolutionary processes except adaptation
Work out expected behavior of this model
Data departing from neutral model⇒ evidence of
adapation
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Caricature Neutral Model of Cultural Evolution

X (i) = unchanging status variable for node i (“social”)
Network is assortative on X (minimal departure from
Erdős-Rényi)
Y (i , t) = rapidly changing choice variable for i (“cultural”)

1 At each t , pick a random i , and a random neighbor j
2 Set Y (i , t) = Y (j , t − 1)
3 Go to (1)

Y (·, 0) = Bernoulli(1/2) process

(= “voter model” of statistical mechanics)

Cosma Shalizi Homophily, Contagion, Confounding



Intro
Homophily Fakes Contagion
Contagion Fakes Causation

Conclusion
References

100 node network, homophily for status (2 groups), initial choices

Cosma Shalizi Homophily, Contagion, Confounding



Intro
Homophily Fakes Contagion
Contagion Fakes Causation

Conclusion
References

After 1000 updates
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Logistic regression of choice on status
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Neutral diffusion + homophily looks like a real connection
between social status and cultural choices
Problem is not the ecological fallacy (red-state/blue-state
fallacy) (not using aggregated data)
Problem is that choices are not independent conditional on
statuses
Deconfound by conditioning on previous Yj of neighbors
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Partial Control by Clustering?

If the problem is latent heterogeneity, why not try to identify the
latent trait?
Latent homophily⇒ you tend to resemble your neighbors
⇒ Especially likely if you all have lots of neighbors in common
who all have lots of neighbors in common, etc.
⇒ modules/communities
Can’t remove confounding but might reduce it
. . . or make it worse if the latent relationship isn’t simple
homophily (e.g. block models)

Cosma Shalizi Homophily, Contagion, Confounding



Intro
Homophily Fakes Contagion
Contagion Fakes Causation

Conclusion
References

An Analogy For Community Control

Gene association studies: does having this genetic variant
influence this trait/change this risk?
Real populations are structured
Sub-populations differ (due to reproductive isolation etc.)
⇒ genes are correlated
⇒ random biases and inflated variances (vs. usual formulas)
⇒ many bogus results
Population structure substantial even for e.g. Germany (Steffens et al., 2006) or Italy,

never mind “white Americans”

Responses: (1) pedigrees; (2) “genomic control” by estimating
over-dispersion empirically (Devlin et al., 2001); (3) clustering
— the diffusion maps in Lee et al. (2009) look a lot like
Newman (2006)
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Conclusion

1 Homophily + causal influence looks like contagion
2 Homophily + contagion looks like causal influence
3 Of course contagion + causality looks like (is?) homophily
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SteglichSnijdersPearson2009.pdf.
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