Homophily, Contagion, Confounding:
Pick Any Three

Cosma Shalizi

Statistics Department, Carnegie Mellon University

Santa Fe Institute

11 December 2009

Cosma Shalizi Homophily, Contagion, Confounding



My interest: non-parametric reconstruction of dynamical
systems from the behavior they generate

Perspective: Yet another ex-physicist

.. Social networks are “just” large coupled dynamical systems
Apologies in advance for social-scientific and graphological
naivete
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“If your friend Joey jumped off a bridge, would you jump
too?”
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“If your friend Joey jumped off a bridge, would you jump
too?”

@ yes: Joey inspires you (social contagion or influence)

@ yes: Joey infects you with a parasite which suppresses
fear of falling (actual contagion)

© yes: you're friends because you both like to jump off
bridges (manifest homophily)

© yes: you're friends because you both like roller-coasters,
and have a common risk-seeking propensity (latent
homophily)

© yes: because you're both on it when it starts collapsing and
that’s the only way off (external causation)
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Intro

Wikipedia, s.v. “Tacoma Narrows Bridge (1940)”
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Are these distinctions with observational differences?
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@ Can't experiment by pushing Joey off the bridge
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Are these distinctions with observational differences?

@ Can't experiment by pushing Joey off the bridge
© Don’t want to impose strong parametric assumptions
Manski (1993) suggests this is just not identifiable, but does not

quite settle the problem
Influence due to group average vs. individuals
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Homophily Fakes Contagion

Contagion, Influence

Whether i does something at time t is well-predicted by
whether i’s neighbors had already done it at t — 1

@ Diffusion of innovations
@ Infectious diseases
@ Not-obviously-infectious conditions (e.g., obesity) ...

This can be due to influence or contagion

Analogy of ideas to diseases is very old: Pliny used it in 110 (Epistles X 96)
Can the same observational consequences can follow from
latent homophily?
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Homophily Fakes Contagion

Notation:
@ Y(i,t) = does node i show condition/behavior at time t?
@ X(i) = latent persistent trait of i
@ Z(i) = other, manifest persistent traits
@ A(/,j) = whether there is an edge from j to i
We suppose that:
@ Y(i,t—1) has adirect influence on Y(i, t)
@ X(i) has a direct influence on whether/when i adopts
@ Z(i) has a direct influence on Y(i, t) (possibly null)
@ Y(j,t— 1) may have a direct influence on Y(i, t), but only if
A(ij) =1
@ Homophily: X(i) and X(j) both directly influence A(/, j)
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Homophily Fakes Contagion
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Homophily Fakes Contagion

Contagion Effects are Nonparametrically Unidentifiable

Informally:

@ Y(j,t— 1) is informative about X(})

@ X(j) is informative about X(i) if i and j are neighbors

©Q X(i) is informative about Y(i, t)

Q .. Y(i,t)LY(j,t—1), even if there is no direct causal effect
© ... Latent homophily is confounded with contagion
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Homophily Fakes Contagion

More formally:
Q@ Y(i,t) — X(i) — A(i,j) is a confounding path from Y(i, t)
to A(/,J)
@ Likewise Y(j,t — 1) — X(j) — A(i,)) is a confounding path
from Y(j,t — 1) to A(i,))
© .. the direct effect of Y(j, t — 1) on Y(i, t) is not identifiable
(Pearl, 2009, §3.5, pp. 93-94)
Adding conditioning on Y(i,t — 1) and Y(j, t) does not remove
the confounding paths
Neither does adding conditioning on Z(i), Z(j)
Argument still goes through with time-varying edges (more
spaghetti)
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Homophily Fakes Contagion

Getting Identifiability

Parametric assumptions can suffice

Better: condition on X; or find Z which block paths from Y to X
Explicit modeling as in Leenders (1995); Steglich et al. (2004)
does both
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Homophily Fakes Contagion

The Argument from Asymmetry

Focus on unreciprocated edges, i — j,j /4 i

Suppose Y(i, t)|Y(j.t — 1)) # Y(i, D] Y(i, t - 1)

Doesn'’t this argue for direct influence?

Considerable prima facie plausibility

Argument breaks down if senders and receivers have
systematically different values of X, with different local relations
toY
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Homophily Fakes Contagion

Toy Example

Ignore time-dependence; try to predict Y(i) from Y(j) and vice
versa when A;j = 1,A; =0
X(i) ~u(0,1)
Edges form with probability oc logit™" (—3|X (i) — X(j))
i nominates j from among neighbors, logit’1 (—|X(j) —0.5))
Y(i) = 10(X(i) — 0.5)3 + N/(0,0.1)
Results:
@ Y(i) is well-predicted from Y (j)
@ Nominees are disproportionately in the middle; i — j,j /i
suggests / is more peripheral
@ For asymmetric pairs, regression of sender on receiver
differs from that of receiver on sender

Cosma Shalizi Homophily, Contagion, Confounding



Homophily Fakes Contagion

Sampling distribution: regression coefficient of Y(i) on Y(j)

Density

=>
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Homophily Fakes Contagion

Asymmetry from preferential nomination
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Contagion Fakes Causation

Making homophily and contagion look like causation

Long-term, hard-to-change social/economic status explains
more short-term, malleable cultural / political / consumer
variables
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Contagion Fakes Causation

Making homophily and contagion look like causation

Long-term, hard-to-change social/economic status explains
more short-term, malleable cultural / political / consumer
variables
Gellner: “Social structure is who you can marry,
culture is what you wear at the wedding.”
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Contagion Fakes Causation

What'’s the evidence?

@ The stories sound good

@ Casual empiricism

@ Correlation/regression analyses; cultural choices are
predictable from social positions (e.g. Bourdieu (1984))

Probably even true a lot of the time
BUT usually ignores social networks and just looks at surveys
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Contagion Fakes Causation
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Contagion Fakes Causation

More Confounding

Direct influence of X (i) on Y(i, t) is confounded with contagion:

@ X(i) is a cue about who /’s friends are, i.e. A(i,))

@ .. X(i) is a cue about what /’s friends think, Y(j,t — 1)
© contagion: Y(j,t — 1) influences Y (i, ) if A(i,j) =1
Q . X(i)LY(i,t) even if no direct influence
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Contagion Fakes Causation

Responsible Just-So Story-telling

These accounts are usually adaptationist/functionalist
At the very least they are causal accounts

We should really check them

Biology suggests: a neutral model

@ Include all the evolutionary processes except adaptation
@ Work out expected behavior of this model

@ Data departing from neutral model = evidence of
adapation
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Contagion Fakes Causation

Caricature Neutral Model of Cultural Evolution

@ X(i) = unchanging status variable for node i (“social”)
@ Network is assortative on X (minimal departure from
Erdds-Rényi)

@ Y(i,t) = rapidly changing choice variable for i (“cultural”)
@ At each t, pick a random /, and a random neighbor j
@ SetY(i,t)=Y(j,t—1)
@ Goto(1)

@ Y(-,0) = Bernoulli(1/2) process

(= “voter model” of statistical mechanics)
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Contagion Fakes Causation

100 node network, homophily for status (2 groups), initial choices
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Contagion Fakes Causation
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Logistic regression coefficient

Contagion Fakes Causation

500 1000 1500 2000

Number of updates

100 node network

Logistic regression of choice on status

black = assortative
grey = non-assortative
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Contagion Fakes Causation

@ Neutral diffusion + homophily looks like a real connection
between social status and cultural choices

@ Problem is not the ecological fallacy (red-state/blue-state
fallacy) (not using aggregated data)

@ Problem is that choices are not independent conditional on
statuses

@ Deconfound by conditioning on previous Y; of neighbors
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Contagion Fakes Causation

Partial Control by Clustering?

If the problem is latent heterogeneity, why not try to identify the
latent trait?

Latent homophily = you tend to resemble your neighbors

= Especially likely if you all have lots of neighbors in common
who all have lots of neighbors in common, etc.

= modules/communities

Can’t remove confounding but might reduce it

...or make it worse if the latent relationship isn’t simple
homophily (e.g. block models)
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Contagion Fakes Causation

An Analogy For Community Control

Gene association studies: does having this genetic variant
influence this trait/change this risk?

Real populations are structured

Sub-populations differ (due to reproductive isolation etc.)

= genes are correlated

=- random biases and inflated variances (vs. usual formulas)

= many bogus results

Population structure substantial even for e.g. Germany (Steffens et al., 2006) or Italy,
never mind “white Americans”

Responses: (1) pedigrees; (2) “genomic control” by estimating
over-dispersion empirically (Devlin et al., 2001); (3) clustering
— the diffusion maps in Lee et al. (2009) look a /ot like
Newman (2006)
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Conclusion

Conclusion

@ Homophily + causal influence looks like contagion
© Homophily + contagion looks like causal influence
© Of course contagion + causality looks like (is?) homophily
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