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Abstract 

“ Number sense ” is a short-hand for our ability to quickly understand, approximate, and 

manipulate numerical quantities. My hypothesis is that number sense rests on cerebral circuits 

that have evolved specifically for the purpose of representing basic arithmetic knowledge. 

Four lines of evidence suggesting that number sense constitutes a domain-specific, 

biologically-determined ability are reviewed: the presence of evolutionary precursors of 

arithmetic in animals; the early emergence of arithmetic competence in infants independently 

of other abilities, including language; the existence of a homology between the animal, infant, 

and human adult abilities for number processing ; and the existence of a dedicated cerebral 

substrate. In adults of all cultures, lesions to the inferior parietal region can specifically impair 

number sense while leaving the knowledge of other cognitive domains intact. Furthermore, 

this region is demonstrably activated during number processing. I postulate that higher-level 

cultural developments in arithmetic emerge through the establishment of linkages between 

this core analogical representation (the “ number line ”) and other verbal and visual 

representations of number notations. The neural and cognitive organization of those 

representations can explain why some mathematical concepts are intuitive, while others are so 

difficult to grasp. Thus, the ultimate foundations of mathematics rests on core representations 

that have been internalized in our brains through evolution.  
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Introduction 

 

Number is a fundamental parameter by which we make sense of the world surrounding us. 

Not only can we quickly and accurately perceive the numerosity of small collections of 

things; but all languages have number words ; all of us have learned, more or less 

spontaneously, to calculate on our fingers ; and most of us have strong arithmetic intuitions 

which allow us to quickly decide that 9 is larger than 5, that 3 falls in the middle of 2 and 4, 

or that 12+15 cannot equal 96, without much introspection as to how we perform those feats. 

I collectively refer to those fundamental elementary abilities or intuitions about numbers as 

“ the number sense ” (Dehaene, 1997, hereafter TNS). 

 

My hypothesis is that number sense qualifies as a biologically determined category of 

knowledge. I propose that the foundations of arithmetic lie in our ability to mentally represent 

and manipulate numerosities on a mental “ number line ”, an analogical representation of 

number ; and that this representation has a long evolutionary history and a specific cerebral 

substrate. “ Number appears as one of the fundamental dimensions according to which our 

nervous system parses the external world. Just as we cannot avoid seeing objects in color (an 

attribute entirely made up by circuits in our occipital cortex, including area V4) and at 

definite locations in space (a representation reconstructed by occipito-parietal neuronal 

projection pathways), in the same way numerical quantities are imposed on us effortlessly 

through the specialized circuits of our inferior parietal lobe. The structure of our brain defines 

the categories according to which we apprehend the world through mathematics. ” (TNS, p. 

245). 

 

In this précis, I shall first briefly summarize the multiple sources of evidence that support this 

claim. These include the presence of evolutionary precursors of arithmetic in animals; the 

early emergence of arithmetic competence in infants independently of other abilities, 

including language; the existence of a homology between the animal, infant, and human adult 

abilities for number processing ; and the existence of a dedicated cerebral substrate, as 

inferred from studies of brain-lesioned patients with acquired deficits of number sense, as 

well as from brain imaging studies of calculation in normal subjects. I shall then briefly 

discuss how the biologically determined number representation interacts with cultural factors 



 4

such as language acquisition and schooling to yield the specifically human ability for higher-

level arithmetic. 

Evolutionary precursors of arithmetic 

If the human ability for arithmetic has a specific cerebral substrate which is partially under 
genetic control, then one should find precursors of this ability in animals. At the scale at 
which most animals live in, the world is made of collections of movable physical objects. The 
evolutionary advantages of being able to extract the numerosity of such collections are 
obvious, were it only to track found sources, predators, or potential mates. It was therefore 
proposed that evolutionary pressures must have lead to the internalization of numerical 
representations in the brain of various animal species (Gallistel, 1990). 

The search for animal arithmetic became an obvious goal of scientific inquiry soon after 
Darwin’s publication of The Origin of species. This quest initally met with failure and 
growing skepticism (in TNS, I tell the famous story of Clever Hans, a horse who was initially 
thought to be able to count and read, but was later discredited). In the modern literature, 
however, considerable evidence indicates that animals possess numerosity discrimination, 
cross-modal numerosity perception, and elementary arithmetic abilities (for review see 
Boysen & Capaldi, 1993; Davis & Pérusse, 1988; Gallistel, 1989; Gallistel, 1990; Gallistel & 
Gelman, 1992). Various animal species including rats, pigeons, raccoons, dolphins, parrots, 
monkeys and chimpanzees have been shown to discriminate the numerosity of sets, including 
simultaneously or sequentially presented visual objects as well as auditory sequences of 
sounds. Cross-modal extraction of numerosity was observed, for instance in rats (Church & 
Meck, 1984). Most such experiments included controls for non-numerical variables such as 
spacing, size, tempo, and duration of the stimuli (Church & Meck, 1984; Mechner & 
Guevrekian, 1962; Meck & Church, 1983).  

Some animals have also been shown to use their internal representations of number to 
compute simple operations such as approximate addition, subtraction and comparison. At 
least some of those experiments required little or no training, suggesting that the numerical 
representation is present in naive animals. For instance, the ability to compute 1+1 and 2-1 
was demonstrated using a violation-of-expectation paradigm in monkeys tested in the wild 
(Hauser, MacNeilage, & Ware, 1996). In some experiments that did require training, there is 
excellent evidence that animals can generalize beyond the training range. A case in point is 
the remarkable recent experiment by Brannon and Terrace (1998). Monkeys were initially 
trained to press cards on a tactile screen in correct numerical order : first the card bearing one 
object, then the card bearing two, and so on up to four. Following this training, the monkeys 
were transferred to a novel block with numerosities five to nine. Although no differential 
reinforcement was provided, the monkeys readily generalized their smaller-to-larger ordering 
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behavior to this new range of numbers. Such evidence suggests that a genuine understanding 
of numerosities and their relations can be found in monkeys. 

What does require years of training, however, and is never found in the wild is the ability 
to learn symbols for numbers. Although a variety of species, including monkeys (Washburn 
& Rumbaugh, 1991), chimpanzees (Boysen & Berntson, 1996; Boysen & Capaldi, 1993; 
Matsuzawa, 1985), and even dolphins (Mitchell, Yao, Sherman, & O'Regan, 1985) and a 
parrot (Pepperberg, 1987) have learned the use of abstract numerical symbols, including 
Arabic digits, to refer to numerical quantities, this always required huge amounts of training. 
Hence, it cannot be taken to indicate that exact symbolic or ‘linguistic’ number processing is 
within animals’ normal behavioral repertoire. It does indicate, however, that abstract, 
presumably non-symbolic representations of number are available to animals and can, under 
exceptional circumstances, be mapped onto arbitrary behaviors that can then serve as 
numerical ‘symbols’. 

Numerical abilities in preverbal infants 

It is remarkable that the elementary numerical abilities that can be demonstrated in 
animals are almost strictly identical to those that have been found in preverbal infants in the 
first year of life. Discrimination of visual numerosity was first demonstrated in 6-7 month-old 
infants using the classical method of habituation-recovery of looking time (Starkey & Cooper, 
1980). Infants watched as slides with a fixed number of dots, say 2, were repeatedly presented 
to them until their looking time decreased, indicating habituation. At that point, presentation 
of slides with a novel number of dots, say 3, was shown to yield significantly longer looking 
times, indicating dishabituation and therefore discrimination of 2 versus 3.  

 In order to demonstrate that numerosity is the crucial parameter that drives behavior, it 
is crucial to exclude all other potentially confounding variables in the stimulus design. In the 
infant literature, this is still a matter of controversy, because many experiments were not fully 
controlled, and in some of them at least, replications suggest that the original behavior was 
imputable to confounds. Still, in the original study, dot density, spacing, and alignment were 
controlled for. In subsequent studies, numerosity discrimination was replicated with newborns 
(Antell & Keating, 1983) and with various stimulus sets, including slides depicting sets of 
realistic objects of variable size, shape and spatial layout (Strauss & Curtis, 1981), and 
dynamic computer displays of random geometrical shapes in motion, with partial occlusion 
(van Loosbroek & Smitsman, 1990). 

 Infants’ numerosity discrimination abilities are not limited to visual sets of objects. 
Newborns have been shown to discriminate two- and three-syllable words with controlled 
phonemic content, duration and speech rate (Bijeljac-Babic, Bertoncini, & Mehler, 1991). Six 
month-olds also discriminate the numerosity of visual events, such as a puppet making two or 
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three jumps (Wynn, 1996). There is also evidence for cross-modal numerosity matching in 6-
8 month-old infants (Starkey, Spelke, & Gelman, 1983; Starkey, Spelke, & Gelman, 1990), 
although its replicability has been disputed (Mix, Levine, & Huttenlocher, 1997; Moore, 
Benenson, Reznick, Peterson, & Kagan, 1987). 

Like many animal species, human infants have also be shown to perform elementary 
computations with small numerosities. Wynn (1992) used a violation-of-expectation paradigm 
to show that infants developed numerical expectations analogous to the arithmetic operations 
1+1=2 and 2-1=1. When shown a physical transformation such as two objects being 
successively placed behind a screen, 4-½ month olds expected the numerically appropriate 
number of objects (here two) and were surprised if another number was observed.  Later 
replications demonstrated that this behavior could not be explained either by biases in the 
location of the objects (Koechlin, Dehaene, & Mehler, 1997), or in their identity (Simon, 
Hespos, & Rochat, 1995). Infants still reacted to the numerically impossible events 1+1=1 
and 2-1=2 when changes in object location and identity were introduced. Thus, infants seem 
to encode the scenes they see using an abstract representation of the number of objects on the 
scene, irrespective of their exact identity and location. 

There has been some discussion as to whether these experiments reflect a genuine 
representation of numerosity in infants. Instead, many of these results could be thought to 
indicate merely that infants have a capacity to keep track of up to 3 or 4 objects through a 
representation of “ object files ” -- a representation in which numerosity would only be 
implicitly encoded, not explicity represented (Koechlin et al., 1997; Simon, 1997; Simon et 
al., 1995; Uller, Huntley-Fenner, Carey, & Klatt, 1999). Space precludes a full discussion of 
this issue here. Suffice it to say, however, that several experiments, notably those 
demonstrating discrimination of auditory signals, temporal events, or large numbers such 8 
versus 16 visual objects (Xu & Spelke, in preparation), are not directly conducive to such an 
explanation. Thus, the object file interpretation, even if it turned out to be correct for many 
experiments with small numerosities, would still have to be supplemented with an additional 
genuinely numerical mechanism. 

Homology or analogy ? 

To demonstrate that human abilities for arithmetic have a biological basis with a long 
evolutionary history, it is not sufficient to demonstrate that animals and preverbal infants 
possess rudimentary number processing abilities. One must also show that there are profound 
homologies between human and animal abilities that suggest a phylogenetic continuity. In 
fact, two striking shared characteristics of number processing in humans and animals have 
been identified : the distance effect and the size effect. The distance effect is a systematic, 
monotonous decrease in numerosity discrimination performance as the numerical distance 
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between the numbers decreases. The size effect indicates that for equal numerical distance, 
performance also decreases with increasing number size. Both effects indicate that the 
discrimination of numerosity, like that of many other physical parameters, obeys Fechner’s 
Law. 

Distance and size effects have been reported in various animal species whenever the 
animal must identify the larger of two numerical quantities or tell whether two numerical 
quantities are the same or not (review in Gallistel & Gelman, 1992). It should be stressed here 
that animals are not limited to processing small numbers only. Pigeons, for instance, can 
reliably discriminate 45 pecks from 50 (Rilling & McDiarmid, 1965). The number size effect 
merely indicates that, as the numbers get larger, a greater numerical distance between them is 
necessary to achieve the same discrimination level. Number size and distance effects have not 
been systematically studied in human infants yet, but the available evidence already suggests 
that they readily discriminate 2 versus 3 objects, occasionally 3 versus 4 or 4 versus 5, but not 
4 versus 6 (Starkey & Cooper, 1980). A recent study indicates that infants can discriminate 8 
versus 16 visual objects even when all size, density and occupation cues are controlled (Xu & 
Spelke, in preparation). 

The distance and size effects indicate that animals and infants seem to possess only a 
fuzzy representation of numbers, in which imprecision grows proportionally to the number 
being represented. As a consequence, only very small numbers (up to about 3) can be 
represented accurately, while other numerical quantities are increasingly imprecise. 
Superficially, this analogical mode of representation may seem to differ radically from the 
kind of representation that adult humans use in arithmetic. Animals are severely limited to 
elementary, approximate, and non-symbolic calculations, while we can make symbolic 
calculations with arbitrary accuracy. Why, then, do I claim that the distance and size effect 
indicate continuity, rather than discontinuity, between the human and animal representations 
of number ? This is because, quite counter-intuitively, those effects do hold with humans, not 
only when representing the numerosity of sets of objects (Buckley & Gillman, 1974; van 
Oeffelen & Vos, 1982), but even when processing Arabic digits or number words (Buckley & 
Gillman, 1974; Dehaene, 1996; Dehaene, Dupoux, & Mehler, 1990; Moyer & Landauer, 
1967). For instance, when comparing Arabic digits, it is faster and easier to decide that 8 is 
larger than 4 than to decide that 8 is larger than 7, even after intensive training. The distance 
effect is found even with two-digit numerals (Dehaene et al., 1990). Comparison times and 
error rates are a continuous, convex upward function of distance, similar to psychophysical 
comparison curves. The number size effect relates to ‘subitizing’, our ability to rapidly name 
the numerosity of a set of simultaneously presented objects when it is below 3 or 4, but not 
beyond (Dehaene & Cohen, 1994; Mandler & Shebo, 1982). It is also found when humans 
calculate. Even in highly trained adults, adding, multiplying, or comparing two large digits 
such as 8 and 9 is significantly slower and error-prone than performing the same operations 
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with digits 2 and 3. Furthermore, we exploit numerical distance to approximate additions and 
to reject grossly false results, such as 4+6=39 (Ashcraft & Stazyk, 1981; Dehaene, Spelke, 
Stanescu, Pinel, & Tsivkin, 1999). 

That human behavior obeys distance and size effects even when the numbers are presented 
in a symbolic notation suggests two conclusions. First, the adult human brain contains an 
analogical representation of numerical quantity very similar to the one observed in animals 
and in young infants, organized by numerical proximity and with increasing fuzziness for 
larger and larger numbers. Second, when presented with number words and Arabic numerals , 
the human brain converts these numbers internally from their symbolic format to the 
analogical quantity representation. This internal access to quantity seems to be a compulsory 
step in number processing, because a distance effect is found even when subjects merely have 
to say whether two digits are same or different (Dehaene & Akhavein, 1995), or in priming 
experiments in which the mere presentation of a digit or of a numeral facilitates the 
subsequent processing of a numerically close target number (Brysbaert, 1995; Dehaene et al., 
1998b; den Heyer & Briand, 1986; Koechlin, Naccache, Block, & Dehaene, 1999).  

A cerebral basis for number sense 

One final piece of evidence is required to demonstrate that the understanding and 
manipulation of numerical quantities is part of our biological evolutionary heritage. One 
should show that it has a dedicated neural substrate. A specific cerebral circuit should be 
reproducibly associated with the representation and acquisition of knowledge about numerical 
quantities and their relations. Although the demonstration is still far from complete, two 
arguments support the hypothesis that the intraparietal cortex of both hemispheres participates 
in such a circuit. First, neuropsychological studies of human patients with brain lesions 
indicate that the internal representation of quantities can be selectively impaired by lesions to 
that area. Second, brain-imaging studies reveal that this region is specifically activated during 
various number processing tasks. 

It has been known for at least 80 years that lesions of the inferior parietal region of the 
dominant hemisphere can cause number processing deficits (Gerstmann, 1940; Hécaen, 
Angelergues, & Houillier, 1961; Henschen, 1920). In some cases, comprehending, producing 
and calculating with numbers are globally impaired (Cipolotti, Butterworth, & Denes, 1991). 
In others, however, the deficit may be selective for calculation and spare reading, writing, 
spoken recognition and production of Arabic digits and numerals (Dehaene & Cohen, 1997; 
Hécaen et al., 1961; Takayama, Sugishita, Akiguchi, & Kimura, 1994; Warrington, 1982). My 
colleague Dr. Laurent Cohen and I have recently suggested that the core deficit in left parietal 
acalculia is a disorganization of an abstract semantic representation of numerical quantities 
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rather than of calculation processes per se (Dehaene & Cohen, 1995; Dehaene & Cohen, 
1997).  

One of our patients, Mr. Mar (Dehaene & Cohen, 1997), experienced severe difficulties in 
calculation, especially with single-digit subtraction (75% errors). He failed on problems as 
simple as 3-1, with the comment that he no longer knew what the operation meant. His failure 
was not tied to a specific modality of input or output, because the problems were 
simultaneously presented visually and read out loud, and because he failed in both overt 
production and covert multiple choice tests. Moreover, he also erred on tasks outside of 
calculation per se, such as deciding which of two numbers is the larger (16% errors) or what 
number falls in the middle of two others (bisection task: 77% errors). He easily performed 
analogous comparison and bisection tasks in non-numerical domains such as days of the 
week, months, or the alphabet (What is between Tuesday and Thursday? February and April? 
B and D?), suggesting that his deficit was rather specific for the category of numbers. There 
are now several observations of patients with dominant-hemisphere inferior parietal lesions 
and Gerstmann’s syndrome (e.g. Delazer & Benke, 1997, Cohen and Dehaene, unpublished 
observations). All of them showed severe impairments in number processing, most clearly in 
subtraction, compatible with a disturbance of the central representation of numerical 
quantities. 

Brain imaging evidence provides independent support for the idea that the region of the 
intraparietal sulcus may be a crucial cerebral site for the representation and manipulation of 
numerical quantity. Since the inception of brain imaging techniques, this region has been 
known to be activated bilaterally whenever subjects calculate (Roland & Friberg, 1985). The 
localization of this activity has been refined to the banks of the left and right intraparietal 
sulcus using the modern techniques of positron emission tomography (Dehaene et al., 1996) 
and functional magnetic resonance imaging (Chochon, Cohen, van de Moortele, & Dehaene, 
1999; Dehaene et al., 1999; Pinel et al., 1999; Rueckert et al., 1996) (figure 1). There is even 
a report of single neurons in this area firing specifically during simple calculations 
(Abdullaev & Melnichuk, 1996). 

Most importantly, several findings support the idea that this region is not just related to 
calculation in general, but more specifically to the quantity representation or “ number line ”. 
First, intraparietal activation is higher during an approximation task that requires quantity 
estimation than during an exact calculation task of similar complexity, but which can be 
performed at least in part by rote retrieval (Dehaene et al., 1999). Second, the inferior parietal 
region has been shown to be unaffected by the notation used for the numbers, suggesting 
involvement at an abstract notation-independent level of processing (Dehaene, 1996; Pinel et 
al., 1999). Third, the duration and intensity of activation in this region is sensitive to distance 
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and number size effect, as predicted from its putative role in encoding the mental analogical 
“ number line ” (Dehaene, 1996; Kiefer & Dehaene, 1997; Pinel et al., 1999). 

Two additional facts are relevant to my hypothesis that inferior parietal cortices contribute 
to a biologically determined numerical representation. First, the association of arithmetic with 
the intraparietal sulcus is remarkably reproducible. If arithmetic was just a cultural activity 
without a strong foundation in brain architecture, one would expect considerable variation as 
a function of learning, education, and culture. Yet reports from research groups in various 
countries suggest that, in most if not all cultures throughout the world, the sites of the lesions 
causing Gerstmann-type acalculia, as well as the sites of brain activation during calculation, 
systematically fall in the inferior parietal region.  

Second, although neuroscientists currently place considerable emphasis on the concept of 
brain plasticity, the evidence suggests that the contribution of inferior parietal cortices to 
number processing is highly specific and cannot be easily transferred to other brain regions. If 
an early brain lesion disrupts parietal circuitry, lifelong difficulties in arithmetic may follow. 
Indeed, a “ developmental Gerstmann syndrome ”, also called developmental dyscalculia, has 
been reported in children (Benson & Geschwind, 1970; Spellacy & Peter, 1978; Temple, 
1989; Temple, 1991). Some of these children show a highly selective, category-specific 
deficit for number processing in the face of normal intelligence, normal language acquisition, 
and standard or even special education. Although there is a dearth of accurate brain imaging 
data on developmental dyscalculia, in at least one case the deficit has been clearly related to 
early damage to inferior parietal cortex (Levy, Reis, & Grafman, 1999). Such evidence 
bolsters my postulate that this area holds a biologically determined quantity representation, 
and that early lesions to that region cause an inability to understand the core meaning of 
numbers.  

Against phrenology : the triple-code model of number processing 
 

The above discussion should not be construed as a modern defense of phrenology, with a 
single brain area – inferior parietal cortex – encoding all knowledge of arithmetic. The view 
that I defend in TNS is exactly opposite. Multiple brain areas contribute to the cerebral 
processing of numbers ; the inferior parietal quantity representation is only one node in a 
distributed circuit. The triple-code model of number processing, which was developed by 
Laurent Cohen and I (Dehaene, 1992; Dehaene & Cohen, 1995), makes explicit hypotheses 
about where these areas lie, what they encode, and how their activity is coordinated in 
different tasks (see figure 2). 

Functionally, our model rests on three fundamental hypotheses. First, numerical 
information can be manipulated mentally in three formats: an analogical representation of 
quantities, in which numbers are represented as distributions of activation on the mental 
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number line; a verbal format, in which numbers are represented as strings of words (e.g. 
thirty-seven); and a visual Arabic representation, in which numbers are represented as a string 
of digits (e.g. 37). Second, transcoding procedures enable information to be translated directly 
from one code to the other. Third, each calculation procedure rests on a fixed set of input and 
output codes. For instance, the operation of number comparison takes as input numbers coded 
as quantities on the number line. Likewise, the model postulates that multiplication tables are 
memorized as verbal associations between numbers represented as string of words, and that 
multi-digit operations are performed mentally using the visual Arabic code.  

Neuropsychological and brain-imaging observations have permitted us to associate 
tentative anatomical circuits to each node of the triple-code model. We speculate that the 
ventral occipito-temporal sectors of both hemispheres are involved in the visual Arabic 
number form; that the left perisylvian areas are implicated in the verbal representations of 
numbers (like any other string of words); and, most crucially, that the intraparietal areas of 
both hemispheres are involved in the analogical quantity representation.  

Although this model remains very simple, it can explain a variety of behavioral and 
neuropsychological observations, including quite counter-intuitive ones. For instance, the 
model predicts that the rote memorization of arithmetic facts depends on a linguistic code for 
numbers and on left-hemispheric language areas ; conversely, the ability to approximate 
orders of magnitude, to compute novel operations such as subtraction through quantity 
manipulation, and more generally to achieve an understanding of conceptual relations 
between numbers, relies on the quantity code provided by inferior parietal areas. Recent 
experiments have largely confirmed this prediction. Brain lesions to the predicted areas can 
dissociate rote calculation from conceptual understanding of quantities (Delazer & Benke, 
1997), exact calculation from approximation (Dehaene & Cohen, 1991), and even 
multiplication from subtraction (Dehaene & Cohen, 1997). Furthermore, brain imaging 
patterns during exact and approximate calculation confirms that distinct circuits are 
involved (Dehaene et al., 1999). When subjects approximate an addition, the bilateral 
intraparietal quantity circuits shows greater activation that when subjects retrieve the exact 
result, in which case greater activation is seen in left-lateralized language-related circuits. 
Experiments in bilinguals also indicate that rote calculation is learned in a language-specific 
fashion and does not easily generalize to a new language, while the ability to approximate is 
language-independent and transfers without cost (Dehaene et al., 1999). 

Another prediction of the triple-code model is that the right hemisphere of a split-brain 
patient (with a severed corpus callosum) should be able to compare Arabic numerals that it 
cannot read (see figure 2). This is indeed the case (Cohen & Dehaene, 1996; Seymour, 
Reuter-Lorenz, & Gazzaniga, 1994). Even more counter-intuitively, the models predicts that 
following a left inferior temporal lesion, a patient should lose the ability to read words and 
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Arabic numerals (a deficit known as pure alexia), and also the ability to multiply, but not 
necessarily the ability to compare or to subtract numbers. Again, we have recently 
demonstrated that this is the case (Cohen & Dehaene, 1995; Cohen & Dehaene, submitted;  
see also McNeil & Warrington, 1994). Some  patients can subtract numbers that they cannot 
read ! That we can explain, and even predict, the occurrence of such strange cases attests that 
one can go a long way with a simple model that assumes a distribution of processing in 
multiple parallel representations and pathways. 

The construction of higher-level number concepts 

How does the coordination of these multiple brain areas emerge during child 
development ? The hypothesis developed in TNS is that all children are born with a quantity 
representation which provides the core meaning of numerical quantity. Exposure to a given 
language, culture, and mathematical education leads to the acquisition of additional domains 
of competence such as a lexicon of number words, a set of digits for written notation, 
procedures for multi-digit calculation, and so on. Not only must these abilities be internalized 
and routinized ; but above all, they need to be coordinated with existing conceptual 
representations of arithmetic. The constant dialogue, within the child’s own brain, between 
linguistic, symbolic, and analogical codes for numbers eventually leads, in numerate adults, to 
an integrated set of circuits that function with an appearance of non-modularity. Before such a 
flexible integration is achieved, however, the hypothesis of a modularity and lack of 
coordination of number representations can explain many of the systematic errors or 
difficulties that children encounter in the acquisition of arithmetic. 

The reader is referred to TNS for a description of some of the difficulties that children go 
through as they successively acquire single number words, number syntax, the counting 
sequence, finger-counting algorithms, memorized arithmetic facts, multidigit calculation 
algorithms, and higher-level number concepts such as zero, negative numbers, or fractions. 
Here I shall only discuss one example, the memorization of the multiplication table. Why is it 
so difficult to learn the small number of single-digit multiplication facts ? Leaving out 
multiplications by 0 and by 1, which can be solved by a general rule, and taking into account 
the commutativity of multiplication, there are only 36 facts such 3x9=27 that need to be 
learned. Yet behavioral evidence indicates that even adults still make over 10% errors and 
respond in more that one second to this highly overtrained task.  

What I think is happening is that our intuition of quantity is of very little use when trying 
to learn multiplication. Approximate addition can implemented by juxtaposition of 
magnitudes on the internal number line, but no such algorithm seems to be readily available 
for multiplication. The organization of our mental number line may therefore make it 
difficult, if not impossible, for us to acquire a systematic intuition of quantities that enter in a 
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multiplicative relation. (This hypothesis is supported by the fact that patients can have severe 
deficits of multiplication while leaving number sense relatively intact ; in particular, patient 
NAU (Dehaene & Cohen, 1991), who could still understand approximate quantities despite 
aphasia and acalculia, was totally unable to approximate multiplication problems). In order to 
memorize multiplication facts, we therefore have to resort to other strategies based on non-
quantitative number representations. The strategy that cultures throughout the world have 
converged on is to acquire multiplication facts by rote verbal learning. That is, each 
multiplication fact is recited and remembered as a rote phrase, a specific sequence of words in 
the language of teaching. This is still a difficult task, however, because the 36 facts to be 
learned all involve the same number words in slightly different orders, with misleading 
rhymes and partial overlap. Error analyses indeed indicate that interference in memory is the 
most frequent cause of multiplication error. When we err, say, on 7x8, we do not produce 55 
or 57, which would be close matches, but we typically say 63, which is the correct 
multiplication result of the wrong operation, 7x9 (Ashcraft, 1992; Campbell & Oliphant, 
1992). 

It can be argued that our memory never evolved to acquire a lot of tightly inter-related and 
overlapping facts, as is typical of the multiplication table. Our long-term semantic memory is 
associative and content-adressable : when cued with a specific episode, we readily retrieve 
memories of related contents based on the semantic similarity. In particular, we generalize 
approximate additions based on numerical proximity. Hence, we can readily reject 
34+47=268 as false, even though we have never been exposed to this particular fact, because 
our representation of quantity immediately allows us to recognize that the proposed quantity, 
268, is too distant from the operands of the addition (Ashcraft & Battaglia, 1978; Dehaene et 
al., 1999).  In the case of exact multiplication, however, the organization of memory by 
proximity is detrimental to performance. It would be desirable to keep each multiplication 
fact separate from the others ; yet our memory is designed so that, when we think of 6x7, we 
co-activate 6x8 and 5x7. In summary, our cerebral organization can explain both why exact 
multiplication facts are so confusing and difficult to learn, and why approximation and 
understanding of quantities are highly intuitive operations. 

Individual differences in mathematical achievement 

Can empirical studies of the number sense also shed some light on individual differences 
in mathematics ? In TNS, a whole chapter is dedicated to the peculiar case of talented 
mathematicians and calculating prodigies. The study of such cases is crucial because at first 
sight it seems to run against my main argument. If the basic architecture of our brain imposes 
such strong limits on our understanding of arithmetic, why do a few children seem to thrive in 
mathematics? How did outstanding mathematicians such as Gauss, Einstein, or Ramanujan 
attain such an extraordinary familiarity with mathematical objects? And how do some 
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retarded or autistic children with an IQ of 50 manage to become experts in mental 
calculation? Do we have to suppose that some people started in life with a distinct brain 
architecture, a biological predisposition for calculation and mathematics?  

In all fairness, it should be said that, at present, very little is known about this issue. 
However, having reviewed the available evidence, I do not believe that that much of our 
individual differences in mathematics are the result of differences in an initial "talent". At 
present, at any rate, there is very little evidence that great mathematicians and calculating 
prodigies have been endowed with a distinct neurobiological structure for numbers. On the 
contrary, there is strong empirical evidence that like all of us, experts in arithmetic have to 
struggle with long calculations and abstruse mathematical concepts. A beautiful illustration is 
provided by a recent single case study which probed the major domains of numerical 
competence, from single- and multi-digit calculation (including acquisition of new 
algorithms) to working memory and long-term memory, in a calculating prodigy (Pesenti, 
Seron, Samson, & Duroux, 1999). In all these domains, the subject exhibited the response 
time and error characteristics of any normal subject, such as size and distance effects. 
Training seemed to have reduced the size of these effects, but their basic characteristics 
remained unaltered. For instance, the subject’s short-term memory span for digits was 11, but 
it did not exceed the normal value of 7 for letters, a domain for which the subject had no 
particular training. This suggests that his excellent memory for numbers was most likely due 
to extensive training rather than to an innate distinct biological organization. 

My hypothesis, then, is that talented people succeed largely because they devote a 
considerable time, attention and effort to their topic of predilection. Through training, they 
develop well-tuned algorithms and clever short-cuts that any of us could learn if we tried, and 
that are carefully devised to take advantage of our brain’s assets and get around its limits. 
What is special about them is their disproportionate and relentless passion for numbers and 
mathematics – a passion which is occasionally of pathological origin, as clearly seen in 
retarded autistic children with calculation skills. Training experiments indicate that, with a 
similar amount of training, normal subjects can also enhance their memory and calculation 
speed (Chase & Ericsson, 1981; Staszewski, 1988). 

Chapter 6 in TNS contains many examples of the algorithms and short-cuts that underlie 
“ prodigious ” calculation. Rather than reiterating them here, let me propose here a novel 
reinterpretation of the famous dialogue between Ramanujan and Hardy. The prodigious 
Indian mathematician Ramanujan was slowly dying of tuberculosis when his colleague Hardy 
came to visit him at the sanatorium. Not knowing what to say, Hardy made the following 
reflection: "The taxi that I hired to come here bore the number 1729. It seemed a rather dull 
number". "Oh no, Hardy", Ramanujan immediately replied, "it is a captivating one. It is the 
smallest number that can be expressed in two different ways as a sum of two cubes" ! 
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1729 is indeed equal to 103 + 93  and to 123 + 13. But how did Ramanujan compute this 
complicated mathematical fact in a matter of seconds, from his hospital bed ? Such anecdotes 
tend to support the belief that geniuses are of a different breed. Yet there is a more plausible 
explanation. Having worked for decades with numbers, Ramanujan evidently had memorized 
scores of facts, including the cubes of small integers. He therefore knew that 729, 1000, and 
1728 are cubes (103 = 1000 is obvious ; likewise 123 = 1728 is familiar because, since there 
are 12 inches in a foot,1728 is the number of cubic inches in a cubic foot ; 93 = 729 is less 
obvious, but clearly easy to compute). Hence, Ramanujan could readily see that 1729 is one 
unit off a cube, and that its last three digits are also a cube. From this, it should be absolutely 
obvious to someone with Ramanujan's training that 1729 is the sum of two cubes in two 
different ways, namely 1728+1 and 1000+729. Proving that it is the smallest such number is 
more difficult, but can be verified by trial and error. Eventually, the magic of this anecdote 
dissolves when one learns that Ramanujan had written this fact in his adolescence notebooks 
(Kanigel, 1991). Hence, contrary to the legend, Ramanujan did not discover it on the spur of 
the moment : he already knew it ! I expect that in-depth studies of normal mental algorithms 
will lead to the debunking of many similar cases, which can and should brought back within 
the range of the normal human competence. 

Concluding thoughts on the nature of the mathematical enterprise 

 In conclusion, I would like to briefly discuss how cognitive neuroscience studies of 
number processing can be relevant to wider issues in the philosophy of mathematics. The 
nature of mathematical objects has been the subject of considerable controversy amongst 
philosophers and the mathematicians themselves. Traditional approaches to the nature of 
mathematics have disregarded the psychological or neurological constraints on the brain of 
the practicing mathematician. My strong belief, though still clearly speculative at this point, is 
that our improved understanding of the neuropsychological bases of number sense can 
provide a new “ naturalistic ” approach to the problem of the foundations of mathematics. 

Many mathematicians still adhere to the philosophical tradition of platonism. They believe 
that mathematical objects have an independent reality outside of the human mind : they are 
abstract, transcend our human descriptions, and predate the evolution of the human brain. 
Mathematicians do not invent them, but merely discover them through progressive 
explorations of the mathematical realm. Several features of this point of view are open to 
criticism, however. Most crucially, Platonism encounters considerable difficulty explaining 
exactly what this abstract realm of mathematical objects consists of, and, worse yet, how a 
physical device such as the human brain could ever interact with this non-physical space of 
pure ideas and know some mathematical truths. 
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Another approach called formalism considers mathematics as a symbolic game with little 
or no meaning. By modifying symbol strings according to the adequate rules, mathematicians 
can derive new theorems from a given set of axioms, but it would be misleading to search for 
transcendental truth in this play with symbols. This point of view may perhaps account for the 
development of some recent areas of pure mathematics. It cannot however explain why 
mathematical objects are so often exquisitely adapted to our understanding of the physical 
world. “How is it possible that mathematics, a product of human thought that is independent 
of experience, fits so excellently the objects of physical reality?” Einstein asked in 1921. The 
physicist Eugene Wigner likewise marveled about the “unreasonable effectiveness of 
mathematics in the natural sciences.” Examples of this effectiveness abound. My personal 
favourite is Kepler’s approximation of the trajectories of planets. Kepler discovered 
empirically – and Newton soon proved from first principles -- that ellipses provide an 
excellent model of the trajectories of the planets around the sun. Yet the properties of ellipses 
were first described, for an entirely different purpose, by the Greek mathematician 
Appolonius about 20 centuries before Kepler’s time! Why did these mathematical objects, 
which originally described the sections of a cone by a plane, succeed so well in mimicking 
astronomical reality ? 

My point of view is that the mystery of the efficiency of mathematics partly dissipates if 
one adheres to a naturalistic philosophy of mathematics, firmly grounded in cognitive 
neuroscience. According to this view, our ability to make sense of the world through 
mathematics is due to the internalization of representations in the human mind and brain in 
the course of evolution. These representations are “ unreasonably effective ” in understanding 
our environment because they have been selected precisely for their representational 
adequacy. Indeed, two consecutive levels of evolution and selection explain the amazing 
adequacy of our present mathematics : first, the biological evolution of elementary 
representational abilities, and second, the cultural evolution of higher-level mathematics (see 
also Changeux & Connes, 1995). 

In the course of biological evolution, selection has shaped our brain representations to 
ensure that they are adapted to the external world. I have argued that arithmetic is such an 
adaptation. At our scale, the world is mostly made up of separable objects that combine into 
sets according to the laws of arithmetic. Representing these combinatorial operations is useful 
to many organisms. Pressures of selection therefore lead to the emergence of an internal 
system for elementary arithmetic in the brain of many animal species, including humans. 
Representational systems have also evolved for the mental manipulation of space, time, motor 
actions, and many other domains yet. I believe that the ultimate foundations of mathematics 
are to be found in these largely innate core representational systems. 
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Specific to the human species, however, is a second level of evolution at the cultural level. 
As humans, we are born with multiple intuitions concerning numbers, sets, continuous 
quantities, iteration, logic, or the geometry of space. Through language and the development 
of new symbols systems, we have the ability to build extensions of these foundational systems 
and to draw various links between them. In the course of centuries, mathematicians have 
generated a great variety of such cultural constructions. Those were then selected according to 
various criteria including their non-contradiction, simplicity, elegance, but also their 
productivity in capturing physical phenomena. This Darwinian view of the history of 
mathematics, with an initial, largely unconstrained generation of pure mathematics followed 
by the selective propagation of its most adequate products, may partially account for the 
efficiency of our present-day mathematics. “ Year after year, mathematical constructions that 
are self-contradictory, inelegant, or useless are ruthlessly tracked down and eliminated. Only 
the strongest stand the proof of time. (...) If today’s mathematics is efficient, it is perhaps 
because yesterday’s inefficient mathematics has been ruthlessly eliminated and replaced. ” 
(TNS, pp. 246 & 251). 

Obviously, we are still very far from understanding how the biological organization of the 
human brain allows us to make sense of the world through mathematics. At present, only the 
most elementary of all mathematical concepts, the small integers, have been submitted to a 
cognitive neuroscience analysis. Yet a similar analysis could be attempted for other domains 
of mathematics. Topology and geometry, for instance, might be plausibly related to the 
representations of space computed by our parietal and peri-hippocampal cerebral regions. As 
our understanding of the neuropsychological foundations of mathematics deepens, not only 
may we reach a better comprehension of the nature of the mathematical enterprise ; but I also 
hope that, once the assets and limits of our cognitive apparatus are better known, our ability to 
teach this notoriously difficult domain will improve. 
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Figure legends 
 

Figure 1 : Anatomical substrates of the number sense in the parietal lobe. All images are 

horizontal slices through the brain (i.e. parallel to the eye-ear plane), with the front of the 

brain on top and the left side shown to the left. Sites of activation, indicated by white spots, 

are mostly concentrated in the intraparietal sulcus, a fissure that runs deep within the left and 

right parietal lobes (here shown at the bottom of each image). Bilateral activation of the 

intraparietal sulcus is observed when subjects solve simple arithmetic problems such as 

subtracting a single digit from 11 (left column, from Chochon et al., 1999) or when they 

approximate additions (middle column, from Dehaene et al., 1999). In both cases, activation 

is found relative to a letter manipulation task which does not involve number processing, but 

is matched to the main task in input and output requirements. The active site in the left 

parietal lobe coincides roughly with the site of lesions causing acalculia of the Gerstmann 

type (right, from Dehaene, Dehaene-Lambertz, & Cohen, 1998a). 

 

Figure 2 : Schematic functional and anatomical architecture of the triple-code model 

(Dehaene & Cohen, 1995). The localization of the main areas thought to be involved in the 

three numerical codes is depicted on a lateral view of the left and right hemispheres (i.e., as 

seen from the outside). This schematic diagram is meant as an aid to memory rather than a 

detailed anatomical depiction. The verbal system, depicted here as a single ellipse, actually is 

known to involve multiple areas close to the sylvian fissure, including inferior frontal, insular, 

and superior and middle temporal cortices. The parietal quantity system and the occipito-

temporal visual form system, shown here in projection, actually involve deeper cortical areas, 

respectively in the intraparietal sulcus and in the fusiform gyrus. Finally, the arrows indicate a 

functional transmission of information across numerical codes and are not meant as a realistic 

depiction of existing neural fiber pathways, whose organization is not fully understood in 

humans. 
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