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Abstract

From the history of mathematics, it is clear that some numerical concepts are far more pervasive

than others. In a densely multimodular mind, evolved cognitive abilities lie at the basis of human

culture and cognition. One possible way to explain the differential spread and survival of cultural

concepts based on this assumption is the epidemiology of culture. This approach explains the relative

success of cultural concepts as a function of their fit with intuitions provided by conceptual modules. A

wealth of recent evidence from animal, infant, and neuroimaging studies suggests that human

numerical competence is rooted in an evolved number module. In this study, I adopted an

epidemiological perspective to examine the cultural transmission of numerical concepts in the history

of mathematics. Drawing on historical and anthropological data on number concepts, I will

demonstrate that positive integers, zero, and negative numbers have divergent cultural evolutionary

histories owing to a distinct relationship with the number module. These case studies provide evidence

for the claim that science can be explained in terms of evolved cognitive abilities that are universal in

Homo sapiens.
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1. Introduction

Scientific knowledge has shown a staggering and explosive increase over the past five

centuries. Mathematical knowledge has played an important role in this evolution by

providing surprisingly efficient formulations to look into and organize empirical phenomena

as well as by being a source of scientific creativity. A debate has emerged on the question of

whether the evolution of science has depended largely on cultural and social factors or on

intrinsic cognitive ones. To be sure, extrinsic factors such as the invention of printing have

played an important role. However, disagreement exists on the question of to what extent

innate cognitive abilities continue to play a role in science. Some scholars (e.g., McCauley,

2000) hold that science requires cognitive skills that have no basis in cognitive evolution;

science can only arise in specific cultural conditions through deliberate practice set in highly

institutionalized environments. Others (e.g., Brewer, Chinn, & Samarapungavan, 2000) insist

that there is a fundamental continuity between scientific and nonscientific modes of thought,

as even young children prefer parsimonious and coherent explanations over ad hoc and

incoherent accounts. If this latter view were true, then there is no major discontinuity between

scientific and intuitive modes of reasoning and science could be explained in terms of

evolved cognitive abilities that are universal in humans. One way to test these opposing views

is to examine as to what extent evolved cognitive abilities have influenced the invention and

spread of concepts in the history of science. In this study, I adopted this approach to examine

the extent to which our evolved number sense has influenced the history of mathematics in

Europe and elsewhere.

Numerical concepts, such as symbolic representations of positive integers, are the result

of cultural evolution: a gradual accumulation of mathematical knowledge within different

cultures. Nevertheless, recent evidence from animal and infant studies suggests that

mathematical concepts are rooted in an evolved number sense that does not require cultural

transmission. At present, the question of to what extent this innate number sense influences

cultural transmission has not been fully explored. Geary (1995) persuasively argued that

most complex mathematical knowledge can only be acquired as a result of deliberate and

sustained practice that is especially designed and maintained for this purpose. This, however,

does not exclude the possibility that innate numerical intuitions continue to influence the

transmission of cultural mathematical concepts. My aim in this article was to explore the

role of our innate number sense in the transmission of cultural numerical concepts. To this

end, I adopted an epidemiological approach (Sperber, 1996) to explain the differential

success of positive integers, zero, and negative numbers as a function of their relationship

with innate cognitive abilities.

The article begins with an overview of the relationship between conceptual modularity and

cultural transmission. It takes the perspective that the mind consists of many specialized

conceptual modules as a starting point and examines how human culture can be explained in

terms of conceptual modularity. Next, I review experimental evidence from cognitive

ethology, developmental psychology, and neuroscience which indicates that humans and

other vertebrates share a highly specialized neural system for detecting numerosities in the

environment. I then examine the cultural transmission of three types of numerical concepts—
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positive integers, zero, and negative numbers—through an epidemiological lens. Each of

these concepts displays a different type of cultural transmission owing to a distinct

relationship with the number sense.
2. Conceptual modularity and culture

2.1. Conceptual modularity

Animals’ brains enable them to behave adaptively even in situations that they have not

encountered. How does the brain create adaptive responses based on sensory input? Cosmides

and Tooby (1994) contended that the brain consists of many specialized systems—conceptual

modules—that have their own specific way of dealing with a given subset of computational

problems; in other words, they are domain specific. Because problems encountered by

humans and by other animals are often mutually incompatible, natural selection has crafted a

dedicated solution for each recurrent evolutionary problem. For instance, our species has a

rich social life that requires specialized social cognition. Social relationships come in many

forms: we make friends, avoid fights, and have to assess whether or not we can trust

someone. The rules we observe for making friends are not the same as those we use when

detecting cheaters; thus, these two competencies are probably governed by separate modules.

We can therefore predict that our cognitive architecture will be densely multimodular (Tooby

& Cosmides, 1995). Taking this a step further, Sperber (1994) and Gallistel (1995) adopted

the view that the brains of humans and other animals are entirely made of modules: there are,

in other words, no domain-general cognitive systems.

How can mass modularity be compatible with the great diversity of human cultural

abilities? Most elements of human culture are too novel and too variable to be the specific

output of any module. Opera, oil refineries, priesthood celibacy, and kayaks to hunt seals

from are all recent cultural inventions. Sperber (1994) drew a useful distinction between

proper and actual domains of modules. The proper domain is the reason a module exists;

it defines the function of the module and is part of its evolutionary history (e.g., the proper

domain of a face-recognition module is human faces). The actual domain is the set of

stimuli to which the module responds, whether it belongs to its proper domain or not. For

the face-recognition module, its actual domain consists not only of real human faces but

also of photographs, drawings, and sculptures of faces. The slight mismatch between the

proper and actual domains is systematically exploited in human culture (Sperber &

Hirschfeld, 2004). Because humans acquire most of their information through culture, a

large part of domain-specific knowledge is cultural. Modules are likely to respond to

cultural stimuli that have a strong concurrence with their proper domains. Masks, for

example, are part of the artistic traditions of many cultures because they tap into the

domain of the face-recognition module by exaggerating some of the prominent character-

istics of faces. Culturally transmitted domain-specific concepts can flourish even if they

have no basis in the real world, such as imaginary creatures and, as I shall argue,

numerical concepts.
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2.2. Epidemiological approaches to culture

Cultural representations have differential transmission success: some occur much more

frequently than unconstrained variation would predict. Religious concepts such as weeping

statues or spirits are universal, although no one has actually witnessed them. Although

ecological relevance may account for the success of some cultural ideas (e.g., hunting

techniques), it does not plausibly account for the salience of seemingly less useful ideas (e.g.,

religious concepts). This has led several anthropologists to suggest that cultural transmission

is biased by evolved psychological predispositions. Cultural traits that build upon preexisting

intuitions from conceptual modules will enjoy a much greater success than cultural traits with

a poor correspondence to conceptual modules because they are easier to reconstruct.

Intuitive concepts are found widely across cultures. They cluster around a small set of

recurrent features, such as folk biology, folk psychology, and folk physics. These bodies of

knowledge develop in young children without explicit teaching. The btheory of mind,Q for
example, matures similarly across widely differing cultures (Callaghan et al., 2005): children

typically pass a standardized false belief test between the ages of 4 and 5 years. Cultural

elaborations upon these core intuitions are easy to learn and are typically part of normal and

spontaneous cognitive development during infancy and childhood. Next to intuitive concepts,

psychological evidence indicates that minimally counterintuitive cultural traits, such as

religious concepts, may also have a transmission advantage. They have a limited number of

features that violate intuitive assumptions (Boyer, 2001). Ghosts, for instance, violate naive

physics because they can walk through walls or disappear at will. On the other hand, they

behave in accordance with naive psychology by having beliefs, desires, and social intercourse.

Thus, minimally counterintuitive concepts provide a cognitive optimum because they activate

an evolved inference system (theory of mind) that supports many inductive inferences and can

therefore be represented without allocating toomany cognitive resources while at the same time

recruiting a lot of attention by violating a limited number of assumptions. Lastly, nonintuitive

concepts are relatively rare across cultures. Such concepts typically violate a large number of

intuitions, making it difficult to represent them coherently or to generate predictions and

inferences. Indeed, psychological evidence reveals that people distort maximally counter-

intuitive ideas to fit themmore into intuitive expectations. Christian and Hindu college students

(Barrett, 1998; Barrett &Keil, 1996), for example, do not intuitively think about their respective

gods as their theologies require. They have difficulties representing them as omniscient,

omnipresent beings and distort stories about them to fit intuitive expectations that they have

about normal people. Unsurprisingly, the transmission of nonintuitive concepts can only be

sustained in highly institutionalized contexts, where long training and external storage of

information overcome the cognitive limitations of the individual (McCauley, 2000).

To conclude, it can be argued that there are not one but several tracks of cultural

inheritance because cultural concepts activate different sets of conceptual modules (Boyer,

2000). Because each module imposes its own organization on a distinct type of knowledge, it

is crucial to examine how these work. To explain patterns of cultural transmission of

mathematical concepts, we need to examine how they interact with intuitions provided by the
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number module. In the next section, I briefly review the experimental literature that supports

the existence of a conceptual number module.
3. Number as the proper domain of a conceptual module

Numbers are abstract representations that seem far removed from elementary sensory data.

They appear to imply knowledge of language: arithmetic, counting, and more complex

computations involving number rely on linguistic tools. It seems, therefore, unlikely that

numbers could constitute the proper domain of one or more dedicated modules. On the other

hand, number is a basic property of the environment. From an evolutionary perspective,

stable properties of the environment that yield potentially useful information can exert

selective pressures on nervous systems in animals. Therefore, we can expect that modules that

infer gravitational pull, color, or numerosities occur in many species. Recognizing

numerosities provides animals with a mechanism to reduce complicated forms of input

(objects or events in time and space) to simple numerical relationships.

3.1. Numerical competence in nonhuman, animals, human infants, and adults

Current experimental evidence from diverse disciplines suggest that numbers are more

than a cultural invention and that human numerical competence has its roots in cognitive

evolution. Numerical competence is present in human infants, prior to their schooling or even

language acquisition. Similar capacities have been found in animals even in the absence of

training. Furthermore, functional neuroimaging studies strongly suggest that number

processing rests on a distinct neural circuitry. Scientists from various disciplines have, based

on this, argued that humans and other vertebrates share an evolved number sense (in the

terminology of Dehaene, 1997), a specialized neural mechanism for detecting numerosities in

the environment.

The evolutionary roots of numerical abilities are perhaps best illustrated by animals that

spontaneously use numerical cues when making adaptive decisions. For example, lionesses

decide whether or not to attack an intruding group based on a comparison of the number of

unfamiliar roaring individuals they hear and the number of members of their pride present

(McComb, Packer, & Pusey, 1994). Animals also rely on numerical cues to guide their

foraging decisions: when presented with two patches of food items, both rhesus monkeys

(Hauser, Carey, & Hauser, 2000) and red-backed salamanders (Uller, Jaeger, Guidry, &

Martin, 2003) go for the larger quantity.

Human infants share this capacity to reason about number. Newborns of just a few days

old discriminate between sets of two and three items but fail to see the difference between

four and six items (Antell & Keating, 1983). Combined with similar findings from animal

studies, some authors (e.g., Uller, Hauser, & Carey, 2001) proposed that animals and human

infants are able to represent numerosities up to 3 or 4 exactly but fail to represent higher

numerosities. However, experiments suggest that infants can represent larger numerosities

approximately provided that the ratio difference is large enough: 6-month olds dishabituate
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when the number of dots on a display changes from 8 to 16 when other variables such as total

surface area have been controlled for (Xu & Spelke, 2000). Nonetheless, only humans are

able to represent numbers larger than 3 or 4 precisely; even chimpanzees after long periods of

training fail to do so (Hauser, 2005).

Adults rely on numerical concepts similar to those of infants and other animals when they

are prevented from counting. If adults are asked to press a key a specific number of times,

while being prevented from subvocal counting, the mean number of key presses increases in

proportion to the target number (Cordes, Gelman, & Gallistel, 2001). Adults’ accuracy and

speed in numerical performance get worse as the absolute size of the numbers increases (size

effect) and as the distance between them gets smaller (distance effect) (e.g., a comparison

between 7 and 8 typically takes a longer response time than that between 3 and 8; Moyer &

Landauer, 1967). In sum, animals as well as human infants and adults who do not count fail to

make exact representations of all but the smallest quantities. From an evolutionary

perspective, this seeming fuzziness may actually prove to be more efficient than a linear,

exact representation of a number. This is because a plausible candidate for the proper domain

of the number module may be calculating return rates when making foraging decisions

(Gallistel, 1990). After all, the difference between 1 apple and 2 apples is more ecologically

significant than that between 50 and 100 apples.

3.2. The neural architecture underlying numerical competence

The neural representation of number has been studied through various neuroimaging

techniques. Models that invoke conceptual modularity at the neural level suggest that there

are neural circuits specialized in domain-specific, semantic-level processing of information,

such as plants and animals (Caramazza & Mahon, 2003). Several neuroimaging studies (e.g.,

Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999) indicate that the horizontal banks of the

intraparietal sulci (HIPS) represent the neural correlate of a conceptual module that deals only

with numerical information. Their activation can be reliably dissociated from nonnumerical

tasks that require a similar level of attention, working memory, and spatial cognition (Simon,

Mangin, Cohen, Le Bihan, & Dehaene, 2002). For example, the functional magnetic

resonance imaging study by Eger, Sterzer, Russ, Giraud, and Kleinschmidt (2003) found that

the presentation of an Arabic digit (say 3) activates the HIPS, whereas that of a similarly

presented letter (say a) does not. Even when presented in an auditory format, the word two

elicits activation in the HIPS, whereas the word red does not. Thus, the HIPS are activated in

the most elementary and cross-modal recognition of numerosities; their activation cannot be

explained as a byproduct of the task demands of numerical operations.

How can individual neurons recognize numerosities? In a set of single-cell studies, Nieder

and Miller (2003) presented rhesus monkeys with pairs of slides with dots that varied in size,

shape, or numerosity. They found individual neurons that responded only to changes in

number and remained insensitive to changes in shape or size. Each number neuron shows a

peak activity to a specific quantity and becomes progressively less active as magnitude

increases. For example, a neuron optimally activated by two is less responsive to one or three

and even less so to more items. Because neurons are only coarsely tuned, close numerosities



H. De Cruz / Evolution and Human Behavior 27 (2006) 306–323312
will activate similar populations of neurons. Smaller numerosities yield narrower tuning

curves, thus making them easier to distinguish; larger numerosities yield broader tuning

curves, thus making their discrimination fuzzier.
4. The epidemiology of numerical concepts

Numerical concepts vary widely between cultures, yet some are more widespread than

others. One way to explain these patterns of cultural transmission is by adopting the

epidemiological approach. To date, the relationships between evolved cognitive abilities and

culture have been mainly examined for religion and supernatural concepts (e.g., Boyer &

Ramble, 2001), folk biology (e.g., Atran, 1998), and folk sociology (e.g., Sperber &

Hirschfeld, 2004). Numerical concepts also constitute a viable candidate. We can expect that

some cultural numerical concepts may enjoy a greater success of transmission because they

correspond closely to the intuitions provided by the number sense. On the other hand,

numerical concepts that minimally violate intuitive expectations can thrive because they are

surprising while not posing too much computational demand. Finally, numerical concepts that

maximally violate numerical intuitions can only be transmitted in highly institutionalized

contexts because external storage of information and highly trained staff are required for their

survival. In the following sections, I show that positive integers, zero, and negative numbers

have a different transmission rooted in their varying relationships with our evolved number

module. For each case, I examine experimental psychological evidence and historical patterns

of cultural diffusion.

4.1. The positive integers

Some developmental psychologists (e.g., Wynn, 1998) believe that positive integers {1, 2,

3,. . .} constitute the psychological foundation from which all other numerical concepts arise.

The apparent ease of individual acquisition (poverty of the stimulus) and ease of cultural

diffusion seem to indicate that positive integers could constitute the proper domain of a

conceptual module. However, as we have seen, the number sense makes only approximate

representations that grow increasingly imprecise as numerosities increase. Hence, positive

integers must be human cultural inventions. The magnitudes that animals as well as human

infants and adults who do not count represent are more properly conceptualized as reals than as

integers. Reals (e.g.,M2,k) are uncountable: they cannot be put in a one-to-one correspondence
with natural numbers. We can conceptualize reals as being on a continuous scale, whereas the

positive integers constitute a discrete set (Gallistel & Gelman, 2000). Because we do not

intuitively reason about numerosities in terms of positive integers, any model that explains the

success and salience of positive integers in various cultures has to explain why these are

apparently intuitively appealing and culturally widespread and why reals are not. To date, no

language that completely lacks number words has been recorded. Nevertheless, there is

considerable variation in their occurrence across cultures: some cultures have elaborate

positional number word systems, whereas others have a very limited number word vocabulary.
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Recent investigations in two indigenous South American hunter–gatherer societies showed that

some cultures do not possess true discrete numerical concepts. The Pirahã (Gordon, 2004) have

only words for one, two, and many—sometimes using their word for one for small collections

of items as well. In controlled experiments, they can discriminate between very small sets such

as two and three but their performance for three and four is at chance level. The Mundurukú

(Pica, Lemer, Izard, & Dehaene, 2004) are also unfamiliar with counting. They too use number

words (up to five) in an approximate rather than precise fashion. For instance, when 5 dots were

presented, the subjects responded five in only 28% of the trials. However, they are able to

discriminate between sets of 20 and 80 dots, not unlike human infants and animals.

These studies indicate that the mere presence of number words does not suffice to promote

an exact representation of numerosities. More crucial perhaps is that both Amazonian cultures

lack a counting routine (i.e., putting objects in a one-to-one correspondence). This results in a

conceptual transformation in which the continuous magnitude scale provided by the number

module is supplemented by a number line consisting of discrete elements (the positive

integers). This connection between one-to-one correspondence and number theory was

already recognized by the mathematician Cantor (1845–1918). Without the principle of one-

to-one correspondence, a true understanding of positive integers as discrete entities does not

emerge, plainly because the number-sensitive neurons’ representations are too fuzzy to enable

discrete representations. Conversely, humans are able to make exact representations of

magnitude without number words. Patients with extreme aphasia have been demonstrated to

show a remarkably conserved ability to make exact multiple digit calculations (Varley,

Klessinger, Romanowski, & Siegal, 2005), suggesting that language is not a prerequisite for

exact calculation. Moreover, positive integers can be represented by nonlinguistic symbols as

well (e.g., a shepherd may keep track of the size of his flock by putting tallies into a one-to-

one correspondence with his sheep as they move between shelter and pasture; Ifrah, 1985).

Thus, not language per se but counting by sequential tagging is the key ingredient to a

successful understanding of positive integers.

The activity of counting involves a relationship between three sets: countable items,

counting symbols, and mental magnitudes (Fig. 1A). The set of items to be counted varies

from one count to another. To count, one establishes a one-to-one correspondence between

each item and a conventionally defined list of symbols that have a fixed ordinality (e.g., the

number words one, two, and three; sequential tagging). The final item tagged determines the

last tag from the counting sequence, which in turn denotes the cardinality of the set. This

highest number word is mapped onto a corresponding mental magnitude. Through cultural

learning, a synaptic connection gets established between these tags and the corresponding

mental magnitude. Thus, the population of neurons in the HIPS that fires preferentially

around three will respond to any symbolic representation for this magnitude. In this way, it

becomes possible to establish a discrete, exact representation of magnitude by mapping an

ordered set of symbols onto mental magnitudes. As shown in Fig. 1A, Arabic numerals that

denote positive integers {1, 2, 3,. . .} are directly translated onto a continuous and

approximate magnitude scale. Temple and Posner (1998) demonstrated that a number

comparison task with Arabic numerals (say 5 and 3) yields an almost identical pattern of

brain activation as one that involves arrays of dots (say five dots and three dots). Thus, the



Fig. 1. The linguistic representation of numbers in a counting sequence (A) and approximately (B).

H. De Cruz / Evolution and Human Behavior 27 (2006) 306–323314
brain immediately translates a positive integer into a mental representation of its quantity. In

contrast, the mental representation of approximate number words follows a different neural

trajectory (Fig. 1B). Here, cardinality is established directly, without sequential tagging. This

approximate representation is subsequently converted into a linguistic expression, the

approximate number word (e.g., few, a couple, about a hundred). Western adults also use

this mechanism when accurate answers are difficult to come by (e.g., bThere are about

300 students in my Introduction to Philosophy class.Q).
If counting is not an evolved ability, then why has it emerged so frequently? Late

Paleolithic artifacts (ordered series of notches on bone and antler) indicate that positive

integers were represented as early as 20,000 years ago, long before writing was invented

(d’Errico, 1998). Understanding positive integers and the counting routine seemingly

develops spontaneously and with little formal teaching in Western and Papua children (Saxe,

1981). Before they can successfully count, preschoolers have the intuition that the application

of a positive integer changes when the numerosity of items changes (Sarnecka & Gelman,

2004). Taken together, this evidence lends support to the suggestion that the counting

procedure itself may constitute a precursor to the positive integer system.
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To ensure that we count each item in a set exactly once, we shift our attention to each of them

in a systematic, ordered way. This can be achieved by gesturing or gaze direction. Indeed, under

experimental conditions, children have more difficulties keeping track when they are prevented

from pointing (Alibali & DiRusso, 1999). Gesturing helps lighten the cognitive demands of

counting because it enables us to individuate objects in space more easily (Goldin-Meadow &

Wagner, 2005). The neural correlates of gesturing and visual attention lie very close to the HIPS

(Simon et al., 2002). The formation of new synaptic connections may be easier between two

anatomically adjacent areas. Culture may key in on this architectural property of the human

brain by creating synaptic connections between them through learning how to count. Similarly,

establishing a one-to-one correspondence between an ordered list of numerical symbols and

mental magnitudes often exploits the structure of the brain. Many cultures use body parts (often

fingers) as number symbols, which explains the wide occurrence of base-5, base-10, and base-

20 positional systems (Butterworth, 1999). Neuropsychological evidence indicates that the

identification of body parts is a conceptual module, the body schema, whose impairment leads

to a disability to identify one’s own body parts. It is an ideal candidate for a list of symbols with

fixed ordinality (number symbols) because it also represents body parts in an ordered fashion:

the comparison of body parts is prone to a distance effect similar to that in number comparison

(e.g., to determine that the nose is lower than the eyes takes a longer response time than judging

that the knees are lower than the eyes; Le Clec’H et al., 2000). Thus, one always has a list with

fixed order at hand, so to speak. The neural correlates of the body schema lie adjacent to the

HIPS, in the left intraparietal lobule. A temporary disruption in this area (through rTMS) results

in a marked increase in reaction time when subjects complete a number comparison task,

suggesting that finger counting continues to play an important part in adult numerical cognition

(Sandrini, Rossini, & Miniussi, 2004).

In brief, although positive integers are intuitive, they are not universal. Although they do

not constitute the proper domain of the number module, they can become part of its actual

domain through the cultural scaffolding provided by the counting procedure. This counting

procedure is a cultural construction that is derived from the modules for number, language,

attention direction, and body-part identification. As a result, positive integers are anchored in

more than one conceptual module, as is the case for many complex cultural concepts such as

religion, art, and mathematics.

4.2. Zero

The concept of zero as a numerical value has created opportunities in Western mathematics

that could never have been realized without it, extending to almost all domains of

mathematics. It might therefore seem strange that zero is not widespread across cultures and

their mathematical systems. From an evolutionary perspective, however, this is not surprising.

Number-sensitive neurons discharge preferentially at different numerosities. Zero obviously

means an absence of neural activation in the number-sensitive areas of the brain. Because

these areas are informationally encapsulated, they cannot reflect on their own lack of

activation. Experiments (e.g., Wynn & Chiang, 1998) lend empirical support to this

hypothesis. Eight-month olds were confronted with either bmagicalQ or expected events. In
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the 1�1=1 or 0 condition, they saw one object on a stage, a screen then occluded it, and a

hand visibly removed it. Once the screen was removed, the infants saw either the expected

result (no object) or a magical appearance in which the removed object was still there.

Intriguingly, subjects showed no surprise to this last result (1�1=1)! In contrast, earlier

studies (e.g., Wynn, 1992) showed that infants are able to predict that 2�1=1 and not 2.

These findings suggest that the number module is not capable of representing zero, leaving

infants unable to form the expectation that no object will be seen.

How then did zero come into existence? Zero as a byproduct of a positional system that

needed a symbolic representation for an empty placeholder emerged several times

independently (e.g., Babylon, Maya, Inca, and India). However, the use of an empty

placeholder does not automatically lead to a true numerical concept for zero, as aptly illustrated

by Mayan mathematics. The Maya had a concept of zero as a result of their base-20 positional

system. Unfortunately, cosmological and religious considerations (the significance of their

solar calendar) created an anomaly at the third position, whichwas set at 20�18=360 (instead of

the straightforward 20�20=400) because 360 is the number of days in their solar year. This

anomaly deprived the Mayan zero from its potential calculative properties (Ifrah, 1985).

Zero as a numerical value has its roots in classical Indian mathematics. The oldest Indian

mathematical concepts can be found in the Vedas, a collection of religious texts dating

between 1500 and 500 bc, and the accompanying Vedangas, which contains sutras, rules that

were of vital importance to the performance of ritual offerings. Large public offerings

required altars constructed from complex geometric figures. If incorrectly constructed, the

offerings would be of no value. Considering the effort, means, and time invested in each

public offering, its success was crucial. This increased the cultural importance of

mathematical concepts such as geometry, arithmetic, and (a precursor to) algebra. An

additional incentive was provided by the fascination for large numerosities, salient in classical

Indian poetry. It originated from stylistic considerations: because large numerosities

impressed readers, poets felt compelled to use ever-increasing magnitudes to emphasize

the age, size, or distance of any event, building, or other thing they described. This led to the

introduction of words that could express powers of 10. Combined with words that denote

single digits up to 9, this enabled the elegant and parsimonious formulation of very large

numbers. Parsimony was important for Vedic texts that were (and still are) learnt by heart.

This eventually resulted in the invention of a positional system in which a symbol for the

empty placeholder became essential. However, it was only in Jain mathematics that zero

became a fully fledged mathematical concept (Joseph, 1990). As a reaction to Brahmin

orthodoxy, heterodox Jains no longer practiced complex offerings. Severed from its religious

origins, mathematics became a discipline studied for its own sake. The Jains had a fascination

for mathematical concepts such as infinity, positing several types of infinite sets centuries

before Cantor. Words for nothingness such as shunya meant more to them than absence or

void and implied receptiveness. Because of their cosmological ideas of time and space,

emptiness could be conceptualized as a thing in its own right instead of merely being an

empty placeholder. This led Hindu mathematicians such as Brahmagupta (598–668) to

wonder how numerical operations with zero could be performed (e.g., whether or not division

by 0 is possible). This mature mathematical concept of zero subsequently spread to China and
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Southeast Asia as well as to the Islamic world, from which it diffused to the West. The first

mention of zero outside India is found in 7th-century Nestorian and Syrian Orthodox

writings. Its spread was facilitated by their interest in Indian astronomy and the search for

efficient methods to calculate an accurate date for Easter. By the beginning of the 11th

century, various sources illustrate that zero had spread throughout the Arab empire both by

scholars and nonscholars. The oldest mention of zero in Europe is found in a Spanish 10th-

century manuscript. In the next few centuries, it spread successfully throughout Christian

Europe, despite several official diktats that discouraged or prohibited Indian numerals. In the

Chinese empire, the spread of zero started in the 7th century (T’ang dynasty), primarily

driven through translations of Indian mathematical, astronomical, and Buddhist texts

(Martzloff, 1995). In Southeast Asia, imbued with Buddhist cultural influence from India,

the use of a circle to denote zero is found in 7th-century inscriptions in Sumatra and

Cambodia (Joseph, 1990). In sum, the concept for zero spread successfully from its place of

origin to a large part of the Old World in a relatively short span of time.

The emergence of zero as a numerical concept in Jain mathematics was possible because it

could free ride on cosmological and philosophical concepts. However, this does not explain

its subsequent spread to other cultures. A possible explanation for this success is its minimal

violation of intuitive expectations of the number module. Although the number module may

be unable to represent zero, zero can become part of its actual domain because the absence of

magnitude can be easily mapped onto the absence of stuff in the world. This counter-

intuitiveness may give zero a memory advantage, as illustrated in a series of experiments that

probed the understanding of zero in young children (Wellman & Miller, 1986). As expected,

the development of the zero concept is different from that of other natural numbers. Young

preschoolers simply treat zero as synonymous for nothing; they do not realize that it is a

numerical concept as well. In magnitude comparison tasks, they are just as likely to say that

0 is larger than 3 as vice versa. By the end of the preschool years, however, most children

understand that zero is a numerical concept and correctly identify it as the smallest natural

number. Interestingly, the initial difficulties seem to facilitate an understanding of abstract

operational rules for zero compared with other numbers. When first-grade students are

confronted with an abstract addition or subtraction task, their success is significantly higher

for tasks involving 0 than for those involving other small numbers, such as 1 or 2. For

instance, they judge correctly that a+0=a but are at a loss when judging whether a+2=a is

false or true. Hence, an early understanding of algebraic rules for zero seems advanced in

comparison with other small numbers. The reason for this advantage is clear from the

children’s justifications for their answers: most state that zero is a special number with special

properties. Thus, zero as a numerical concept was long in the making because it is

counterintuitive. However, once originated, it became appealing precisely because it violates

ontological expectations.

4.3. Negative numbers

At first sight, negatives may seem counterintuitive because they violate ontological

expectations. However, compared with zero, which is minimally counterintuitive, negative
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numbers provide many violations that ultimately undermine our intuitions about number. Why

should a negative times a negative yield a positive? What is the relationship between the value

of �3 and its absolute value |3|? From an evolutionary point of view, it is unlikely that the

mental number line would be capable of handling negative numbers because it is empirically

impossible to experience negative numerosities. In one number comparison task (Fischer,

2003), adults were presented with pairs of positive integers, a positive and a negative integer, or

negative integers. The subjects showed faster response times for small absolute numerosities

(e.g.,�3, 2) than for larger ones (e.g.,�4, 9). However, response times were especially slow in

trials with two negative numbers, suggesting that our mental number line does not extend to

negative integers. Another line of evidence for the nonintuitiveness of negatives comes from

education: eighth-grade students were probed on their knowledge of the minus sign in solving

first-grade equations (Vlassis, 2004). Despite their prior knowledge of algebra and negative

integers, error rates soared when they were confronted with negatives in equations, especially

when compared with equations that involved only positive integers. Interviews with these

pupils revealed that they primarily relied on procedural rules learnt by heart. Even high-level

students experienced difficulties explaining these procedures, showing that their performance is

due to a studious application of rules rather than an intrinsic understanding of negative

numerosities. In their answers, they seldom appealed to the mental number line or other models

such as explaining negatives in terms of gains and debts. Because negative numbers are

nonintuitive, we may ask whether they are still part of the actual domain of the number module.

As Fischer (2003) demonstrated, negative integers show similar distance and size effects as do

positive integers, although they are processedmarkedly slower. Thus, intuitions provided by the

number module still structure this concept. This can be seen in many other types of nonintuitive

thought. For instance, when subjects are asked to invent extraterrestrial life forms, they do not

produce a limitless variety of beings but rather draw upon their knowledge of terrestrial animals

to structure their imagined beings (e.g., bilateral symmetry, sensory organs), as do professional

science fiction writers (Ward, 1994). Likewise, negative numbers are structured by analogy

with the positives: they are represented on a mental number line that runs backward.

In contrast to zero, which was readily assimilated as soon as it reached Western

mathematicians, negative numbers were poorly received. Most Western 16th- and 17th-

century mathematicians, including Pascal and Vieta, rejected or questioned negative numbers

(Buzaglo, 2002). As late as 1830, the eminent mathematician De Morgan wrote that b3�8 is

an impossibility; it requires you to take from 3 more than there is in 3, which is absurdQ (cited
in Greer, 2004, p. 541). The struggle with the negative integers’ ontological status may have

contributed to their poor cultural transmission and long development in Western mathematics.

Indeed, in the history of science, we can find numerous examples of how intuitive notions,

based on the proper domains of various modules, have restrained and slowed down scientific

progress. For example, in biology, the widely held belief that species have unchanging

essences is deeply incompatible with evolutionary theories which hold that species can evolve

into new species. As Hull (1964) put it, essentialism in taxonomy (and biology in general)

resulted in 2000 years of stasis; before Darwin and other evolutionary theorists, biologists

such as Linnaeus (1707–1778) did not make any significant theoretical contribution to

taxonomic theory since Aristotle (384–322 bc) laid its foundations. Likewise, not until the
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late 19th century did mathematicians finally reject the long-held doctrine that negative

numbers are impossible (Greer, 2004). Arabian mathematicians rejected negatives altogether.

Indeed the term algebra, derived from the seminal text by al-Khwarizmi, Al-jabr waTl
muqaal-jabr (830), means restoration, as in the sense of dadding equal terms to both sides of

an equation to remove negative quantitiesT (Stedall, 2001). Although Chinese mathematicians

did use negative integers to solve equations, they were reluctant to accept a negative as a

result of an equation, resulting in many problematic reformulations of what would otherwise

have been straightforward solutions (Joseph, 1990). Initially, only medieval Indian

mathematicians developed a system to deal with negative quantities. Prior to the 19th

century, European mathematicians such as Leibniz who accepted negatives did so despite

their apparent clash with numerical intuitions, emphatically stressing their usefulness in

calculations. Like other nonintuitive concepts, their full acceptance requires a highly

institutionalized context. Only with the advent of 19th-century mathematical institutions and

formalization as part of the curriculum of the new research-oriented universities did negatives

become incorporated in Western mathematics (Restivo, 1992). One of the reasons why

European mathematicians successfully integrated so many nonintuitive concepts (e.g.,

imaginary numbers, infinite sets) may be that they consistently strove to externalize such

concepts in a consistent set of symbols. This cognitive process, referred to as active

externalism (Clark & Chalmers, 1998), is the process by which computations performed in

the mind are extended into the world. By assigning a specific symbol (e.g., the minus sign) to

nonintuitive ideas, they become easier to handle and to remember. This process of

externalism protects nonintuitive concepts from the corrosive effects of biased cultural

transmission. Once mathematical concepts are nested outside the brain, their evolution and

cultural transmission are less vulnerable to corruption by individual mathematicians or to

competition from ideas that are easier to learn, that speak more to the imagination, or that

pose less computational demands. They gain a degree of autonomy that would be impossible

to attain were they represented in the mind alone. This externalization is sustained by the

highly institutionalized context of research programs in universities, scientific journals, and

mathematical societies.

In sum, although negative numbers are still part of the actual domain of the number

module, they are nonintuitive and therefore difficult to transmit and reconstruct. As they do

not activate an evolved inference system and therefore are supported by few inductive

inferences, concepts as these require a long training period and external storage of

information to overcome cognitive limitations. Indeed, the history of Western mathematics

from the 19th century onward is characterized by an increased acceptance of nonintuitive

concepts, including negative numbers, which goes hand in hand with an increased

institutionalization of mathematical practice.
5. Conclusion

In this study, I examined the cultural transmission of numerical concepts through an

epidemiological approach. This research on the history of number concepts provides evidence
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for continuity between science and cognitive evolution. Historical evidence indicates that the

emergence and subsequent spread of cultural number concepts are influenced by the evolved

structure of the human brain. The multiple and frequent cultural invention of positive integers

can be explained as a result of their close fit with intuitions provided by the number module.

The anatomical proximity of this module to other modules involved in counting by the

sequential tagging procedure further adds to their salience. By being rooted in more than one

conceptual module, including body-part recognition and linguistic skills, positive integers are

easy to learn and to transmit. The unique invention of zero as a numerical concept and its

successful spread can be seen as a result of content-biased cultural transmission. Its

counterintuitiveness facilitated its cultural transmission; once emerged, it could easily spread

to neighboring cultures with positional systems. In contrast, negative numbers have spread

marginally and late from their place of origin due to their nonintuitiveness. Although they are

part of the actual domain of the number module, they cannot be grasped intuitively and

therefore need a highly institutionalized context to thrive. Active externalism allows for the

storage and representation of such nonintuitive information, thereby making it less vulnerable

to the corrosive effects of content-biased cultural transmission. These results can shed light on

the question of to what extent evolved cognitive capacities that are universal in Homo sapiens

are sufficient to promote scientific thought. In human culture, the proper and actual domains

of any conceptual module rarely overlap entirely. In some cultural domains of expertise, this

overlap is at times so marginal that cultural transmission can only take place within a highly

institutionalized context, characterized by active externalism and dedicated highly trained

personnel. Without these, humans would perhaps only be able to transmit intuitive and

minimally counterintuitive concepts. To date, the epidemiological approach has been applied

to biology and religion. This examination of the epidemiology of number representations

opens the possibility that this approach can be applied to the study of other scientific

disciplines for which evidence exists that they are also governed by evolved conceptual

modules, such as physics and psychology.
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