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ABSTRACT: Are there empirical regularities in the shapes of letters
and other human visual signs, and if so, what are the selection pres-
sures underlying these regularities? To examine this, we determined
a wide variety of topologically distinct contour configurations and
examined the relative frequency of these configuration types across
writing systems, Chinese writing, and nonlinguistic symbols. Our
first result is that these three classes of human visual sign possess a
similar signature in their configuration distribution, suggesting that
there are underlying principles governing the shapes of human visual
signs. Second, we provide evidence that the shapes of visual signs
are selected to be easily seen at the expense of the motor system.
Finally, we provide evidence to support an ecological hypothesis that
visual signs have been culturally selected to match the kinds of con-
glomeration of contours found in natural scenes because that is what
we have evolved to be good at visually processing.

Keywords: natural scenes, letter shape, visual signs, object junctions,
ecological vision, evolution of writing.

Despite the great deal of variation in character shape in
writing systems over human history (Fairbank 1968; Na-
kanishi 1980; Ifrah 1985; Sampson 1985; Coulmas 1991;
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Robinson 1995; Daniels and Bright 1996; Ager 1998; Helf-
man 2000), might there be underlying similarities? In this
article, we will address three questions concerning the
shapes of human visual signs. First, we will ask whether
there are any empirical regularities governing the shapes
of human visual signs. In an effort to answer this, we will
identify a wide array of topologically distinct contour con-
figurations and will measure the relative frequency of these
configurations as they occur in letters across 100 writing
systems over human history, Chinese characters, and non-
linguistic symbols. We will demonstrate that there are
strong correlations among the configuration distributions
of these three classes of visual sign, suggesting that the
configuration distribution for human visual signs tends to
possess a characteristic signature. Second, we will show
that this signature correlates highly with the configuration
distribution found in trademark symbols (signs that are
selected primarily for visual recognition, not for the motor
system) and with measures of visual stimulus complexity
but that the visual sign signature correlates poorly with
the configuration distribution found in scribbles and
shorthand (drawings that are selected primarily for motor
execution, not for visual recognition) and with measures
of motor complexity. We will conclude from this that visual
sign shapes are selected for optimization of visual recog-
nition, not motor execution. Finally, we will test an eco-
logical hypothesis that the shapes of visual signs have been
selected to resemble the conglomerations of contours
found in natural scenes, thereby tapping into our already-
existing object recognition mechanisms, somewhat akin to
sensory exploitation hypotheses in animal signaling (End-
ler 1992; Guilford and Dawkins 1993; Ryan 1998). We will
provide evidence that the more common configuration
types found in natural scenes tend to be the more common
ones found in human visual signs.

A Topological Notion of Shape: Configuration Types

Characters in writing systems are configurations of strokes,
or segments, and for the purpose of quantifying their
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Figure 1: g, Illustration of the kinds of variation allowed within a configuration type. Each configuration shown stands for a large class of configurations
of the same type, where the following features can vary independently: overall orientation of the configuration, relative orientation of the segments,
relative lengths of the segments, and shapes of the segments. Example cases are shown for the three configuration types with a length of two. b,
Catalog of all 36 distinct configuration types with three or fewer segments, with ID number and proper name. The catalog allows only configuration
types where for any two distinct segments x and y, x can intersect y at most once and no segment can intersect itself.

structure, we developed the notion of a configuration type
that captures the fundamental topological structure of a
configuration. We have confined our catalog of configu-
ration types to three or fewer segments because we found
(Changizi and Shimojo 2005) that across 115 nonlogo-
graphic writing systems over human history, varying in
number of characters from about 10 to 200, the average
number of strokes per character is approximately three
and does not appear to vary as a function of writing system
size. Also, allowing configuration types with more than
three segments leads to an explosion of possibilities, se-
verely hindering analysis. Figure 1 shows all 36 distinct
configuration types possible using three or fewer straight
segments (along with their name and identification num-
ber), where each of the shown configuration types rep-
resents a large class of configurations with the same to-
pology and where the relative orientation (between 0° and
180°), lengths, and shapes of the segments can vary in-
dependently, as can the overall orientation of the config-
uration. For example, L, T, and X represent the three top-
ologically distinct configuration types built with exactly

two segments, and each defines a class of type-identical
configurations (see fig. 1a).

The configuration distribution for a set of visual signs
is the frequency distribution of configuration types across
the signs in that set (normalized so that the frequencies
sum to 1). For the configuration distributions we measure
here, we are not interested in whether the distributions
are significantly different (they usually are), but instead
we are interested to test whether, more weakly, x is a more
common configuration type in distribution B & x is a
more common configuration type in distribution C. Ac-
cordingly, unless otherwise stated, frequency ranks will be
used when quantitatively comparing two configuration
distributions, and the ranks are computed so that rank 1
is the highest frequency, tied frequencies receive identical
rank, and after a tie, the subsequent rank is the next higher
rank; for example, 50%, 10%, 10%, and 3% would have
ranks 1, 2, 2, and 3. Note that we have designed our
methodology in such a way that the frequency for each
three-segment configuration type is independent of every
other type (see “Configuration Measurement and Tests of



Observer Veridicality” in the appendix), and the same is
true among the two-segment configuration types (namely,
L, T, and X). However, the two-segment configuration
types are not independent of the three-segment configu-
ration types. For this reason, our quantitative comparisons
of distinct configuration distributions will concentrate pri-
marily on the 32 three-segment configuration types. Fi-
nally, we note that our configuration distributions were
measured by trained human observers; see “Configuration
Measurement and Tests of Observer Veridicality” and fig-
ures Al and A2 in the appendix for validations of their
objectivity.

The above notion of shape is topological and therefore
ignores geometrical aspects of shape. For the purposes of
this article, however, this topological notion of shape is
appropriate for the following reasons. First, many visual
signs can undergo significant geometrical shape variation
without losing their identity, but their topological prop-
erties are more highly constrained. For example, each time
you draw a T, the specific geometrical features differ, but
the topology remains identical. And consider the tremen-
dous number of fonts, where it is primarily the geometrical
properties that vary. Second, our notion of shape also has
to be applied to the conglomerations of contours found
in natural scenes, and the geometrical properties of such
conglomerations will change substantially with the ob-
server’s viewpoint (i.e., accidental properties), whereas the
topological properties will be viewpoint invariant (non-
accidental) to a much greater extent. Topologically defined
shape—our configuration types—therefore provides a ro-
bust notion of shape for both visual signs and conglom-
erations of contours found in natural scenes, allowing us
to compare these two realms.

Furthermore, there are theoretical and empirical reasons
to believe that topological shape is more important than
geometrical shape for object recognition in the visual sys-
tem. Theoretically, it has long been noticed within the
computational vision literature that recognizing object
junctions—which are topologically defined conglomera-
tions of contours—will be crucial to recognizing objects
(Guzman 1969; Clowes 1971; Huffman 1971; Turner 1974;
Waltz 1975; Chakravarty 1979; Kanade 1980; Barrow and
Tenenbaum 1981; Binford 1981). And empirically, there
is evidence that the visual system represents topological
structures as intermediate levels in the computation of
objects (Biederman 1987; Biederman and Cooper 1991;
Biederman and Gerhardstein 1993). Therefore, in addition
to allowing us to compare human visual signs with natural
scenes, the topological notion of shape we use here may
have some psychological reality.
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Human Visual Signs Possess a Characteristic Signature
Configuration Distribution

With our notion of shape—configuration types—in hand,
what shapes do we in fact find among human visual signs?
We considered three principal classes of visual sign. The
first is a set of 96 writing systems, including numerals,
abjads (characters for consonants but not for vowels),
abugidas (characters for consonants but diacritical marks
for vowels), alphabets (characters for consonants and vow-
els), and syllabaries (characters for syllables) from five ma-
jor taxa—Ancient Near Eastern, European, Middle East-
ern, South Asian, and Southeast Asian—as well as invented
writing systems (for details, see “Writing Systems and
Shorthand” in the appendix). This set included only non-
logographic writing systems, that is, where characters do
not stand for whole words, and thus we refer to it as
nonlogographic writing systems. The configuration types
were determined for 1,442 characters across these writing
systems. The second class of visual sign we considered is
Chinese characters, from which we measured 4,759 con-
figurations (for details, see “Chinese, Nonlinguistic Sym-
bols, Trademarks, and Children Scribbles” in the appen-
dix). The third principal class of visual sign is nonlinguistic
symbols, for example, music or traffic symbols, from which
we measured 3,538 configurations (for details, see “Chi-
nese, Nonlinguistic Symbols, Trademarks, and Children
Scribbles” in the appendix).

The configuration distributions for these three classes
of visual sign are displayed in figure 2a. There are signif-
icant differences among these distributions, and the study
of these differences is not our purpose here. Rather, we
are interested in examining the degree to which they are
similar and, in particular, in testing the extent to which
more common in distribution B < more common in
distribution C. The correlation of the ranks of the 32 in-
dependent three-segment configuration types are as fol-
lows: between writing and Chinese, R = 0.69 (P<
.00001); between writing and symbols, R = 0.83 (P<
.000001); and between Chinese and symbols, R = 0.81
(P <.000001). The rank orders among the three two-
segment configurations—L, T, and X—are identical for all
three kinds of visual sign. We averaged these three distri-
butions to obtain a summary distribution for visual signs,
shown in figure 2b.

To see that the visual sign distribution is not some kind
of mathematical tautology, it is useful to consider what
the configuration distribution would be for images of
tilings. For example, an image of a honeycomb, or hex-
agonal tiling, would have a distribution consisting of only
Ys. A triangular tiling would, alternatively, possess only
asterisks. An image of a brick wall would, for example,
possess just Ts and TLs.
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Figure 2: a, Configuration distribution across visual signs, including nonlogographic writing systems (solid line), Chinese (dashed line), and non-
linguistic symbols (hatched line). The correlation between writing and Chinese is R = 0.69 (P<.00001), between writing and symbols is R =
0.83 (P<.000001), and between Chinese and symbols is R = 0.81 (P<.000001). b, Summary distribution for visual signs, which is the average of
the three plots in a. For comparison’s sake, we will display this as a dotted line in several upcoming plots.

To show that the configuration distribution for visual
signs is not a consequence of random lines on a page,
visual images were fabricated via randomly placing strokes
on the page, as described in “Configuration Measurement
and Tests of Observer Veridicality” in the appendix. The
measured configuration distribution for random lines is
shown alongside the visual sign distribution in figure 34,
and one can see that the distributions are drastically dif-
ferent, having no correlation between them (R = 0.1,
P> .35) for the ranks of the 32 independent three-segment
configuration types. In particular, the random line distri-
bution is largest for configuration types X, #, and
“camp”—very complex configuration types—a distribu-
tion unlike the signature distribution found for visual
signs.

We saw that the visual sign distribution is not due to
random lines on the page, but perhaps a better notion of
random would be where one randomly draws on the page
(rather than randomly throws strokes onto the page). To
show that the configuration distribution for visual signs
is not a tautological consequence of writing (i.e., where
even randomly drawing leads to it), we measured the dis-
tribution (726 configurations) from 17 scribble drawings
from 26- to 32-month-old children (fig. 3b). For details,
see “Chinese, Nonlinguistic Symbols, Trademarks, and
Children Scribbles” in the appendix. Among the 32 in-

dependent three-segment configuration types, the scribble
distribution ranks do not significantly correlate with those
of visual signs (R = 0.30, P> .05). Because it is possible,
in principle, for correlations between distributions to be
absent and yet for the distributions not to be significantly
different from one another, we computed the 95% con-
fidence interval around the visual sign distribution assum-
ing 726 configurations were sampled from it, and this is
shown figure 3b (gray); one can see that the scribble dis-
tribution deviates considerably from the visual sign
distribution.

Human Visual Signs Are Selected for Vision
at the Expense of Motor

In the previous section, we have seen that there are strong
similarities in the configuration distributions found across
diverse classes of human visual sign and that these regu-
larities are not some kind of tautology and not a conse-
quence of random lines or random motor activity. There
are two obvious potential selection pressures shaping vi-
sual signs, corresponding to reading and writing: visual
signs must have shapes that we are able to recognize with
our visual systems and that we can produce (very often)
by hand. Although it is almost surely the case that both
reading and writing contribute to the shapes of visual signs,
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Figure 3: a, Configuration distribution measured from images with random lines (solid line), with standard error bars shown (as seen in fig. A2),
but here shown alongside the average distribution across all visual signs (dotted line; i.e., the average of nonlogographic writing, Chinese, and
symbols). There is no significant correlation between the ranks among the three-segment configuration types (R = 0.1, P> .35), and one can see
that the configuration distribution for random line images differs significantly from that of visual signs (i.e., nearly always falls outside of the error
bars). b, Configuration distribution for children scribbles (solid line) shown alongside the average distribution across all visual signs (dotted line at
center of gray band). There is no significant correlation among the ranks for the 32 independent three-segment configuration types (R = 0.3, P>
.05). Because only 726 configurations were sampled from scribbles, in principle, the distributions could be not significantly different, despite the
lack of correlation. To check this, the gray areas show the 95% confidence interval regions around the visual signs distribution, given that 726
configurations were sampled from scribbles. That is, if 726 configurations were to be sampled using the visual sign configuration distribution, then
the gray region shows the 95% confidence interval for each configuration type. Sixteen of the 35 configuration type frequencies for scribbles fall
outside of the 95% confidence interval for visual signs. Among the 20 configuration types that actually occur within the scribble distribution, 12

fall outside the 95% confidence interval for visual signs.

here we ask whether one of these may be the principal
driver of the configuration distribution (i.e., of topological
shape). We test the extent to which visual signs appear to
be selected for motor and then test the extent to which
they appear to have been selected for vision.

Not Selected for Motor: Shorthand and Motor Complexity

To test whether the visual sign distribution is a result of
selection pressure to optimize motor complexity of draw-
ing, we carried out two analyses. First, because shorthand
characters are selected for writing at the expense of read-
ing, we measured the configuration distribution for short-
hand (121 configurations from six shorthands; see “Writ-
ing Systems and Shorthand” in the appendix), as shown
in figure 44. The shorthand distribution possesses no cor-
relation with the ranks from three-segment configuration
types from visual signs (R = 0.35, P> .05) or from two-

segment configuration types (R = 0.33, P> .20). Because
of the small number of configurations sampled for short-
hand, there is an increased possibility that, although there
is no correlation, there may be no significant differences
between the distributions. We computed 95% confidence
intervals around the nonlogographic writing system dis-
tribution (fig. 4a, gray), and one can see that they differ
considerably; for example, for the two-segment configu-
ration types (L, T, and X), the shorthand distribution varies
more than two orders of magnitude, whereas the nonlogo-
graphic writing system distribution does not vary much.

Next, we determined the minimum number of hand
sweeps (number of pen strokes plus the number of pen
lifts) required to draw each configuration type (fig. 4b,
left). For example, F and A each require four hand sweeps
(three pen strokes and one pen lift), and H and “spiral”
each require five hand sweeps (three pen strokes and two
pen lifts). There is no significant correlation (R = 0.22,
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P> .2) among the three-segment configuration types be-
tween the number of hand sweeps and the frequency ranks
for visual signs (fig. 4b, right).

These two results—the lack of correlation between
shorthand and visual signs and the lack of correlation
between motor complexity and visual signs—suggest that
visual sign topological shape is not strongly selected for
the motor system.

Selected for Vision: Trademarks and Visual
Stimulus Complexity

To test whether the visual sign distribution is a result of
selection pressure for visual recognition, we carried out
two analyses. Trademark symbols of businesses are selected
to be easily recognized by the visual system, and because
they are typically not drawn by hand, they should be under
little selective pressure for motor optimization. The con-
figuration distribution (consisting of 1,403 configurations
in all; see “Chinese, Nonlinguistic Symbols, Trademarks,
and Children Scribbles” in the appendix) across trade-
marks (fig. 5a) closely matches (among the ranks of the
three-segment configuration types) that for visual signs
(R = 0.89, P <.000001), indicating that visual signs may
generally be selected primarily for viewing.

Next, we asked how well the configuration distribution
for visual signs correlates with human judgments of visual
stimulus complexity. Human judgments of visual stimulus
complexity have been found to correlate highly with the
number of angles in the stimulus (Hochberg and McAlister
1953; Attneave 1957; Arnoult 1960), and figure 5b shows
how this relates to the distribution for visual signs. Most
of the signature peaks and troughs found in visual signs
are absent (fig. 5b, left), and there are clear nonrandom
trends for the residual around the regression line (fig. 5b,
right). Nevertheless, among the three-segment configu-
ration types, there is a highly significant and strong cor-
relation (R = 0.69, P < .00001) between the number of
angles and the frequency ranks for visual signs.

These two results—the strong correlation between
trademarks and visual signs and the strong correlation
between visual stimulus complexity and visual signs—sug-
gest that visual signs are strongly selected for the visual
system. In combination with the previous parts of this
section, we can conclude that visual sign configuration
types appear to be selected for vision at the expense of
motor.

Configuration Distribution Signature Is
Found in Natural Scenes

Thus far, we have seen that there are regularities in the
kinds of topological shape found across human visual signs

The Shapes of Visual Signs over Human History E000

and that these regularities appear to be selected for vision
at the expense of motor. We consider an ecological and
visual explanation for why visual signs are shaped the way
they are. The hypothesis states that visual sign topological
shapes have been selected (by cultural evolution or by trial-
and-error design) so that more common configuration
types among visual signs are the more common config-
uration types among natural scenes, thereby exploiting
what humans have evolved to be good at visually pro-
cessing. Note that the hypothesis does not predict that the
probability distributions for visual signs and natural scenes
do not significantly differ. Rather, much more weakly, the
prediction is that more common in visual signs < more
common in natural scenes, and thus we minimally expect
the ranks to correlate. This hypothesis has direct analogies
to sensory exploitation hypotheses in sexual selection the-
ories of animal signaling (Endler 1992; Guilford and
Dawkins 1993; Ryan 1998). Note, counterintuitively, that
if the hypothesis is true, then if human visual signs were
placed within natural scenes, the visual signs would ac-
tually be very difficult to detect. However, human visual
signs have been selected to be read and distinguished from
bare sand, plain soil, paper, papyrus, walls, and so on, not
distinguished from natural scene backgrounds.

In the first subsection of this section, we measure the
configuration distribution from images of scenes and dem-
onstrate that its ranks correlate with that of the signature
distribution found among human visual signs. It is rea-
sonable to have some initial reservations about sampling
natural images. First, there is some reason to worry about
how representative of our ecology any given set of images
might be. Second, and more fundamental, it is not entirely
clear what the relevant ecology is for the hypothesis. Is it
the ancestral ecology, perhaps the savanna? Or is it the
environment in which the various visual signs were in-
vented or evolved? We reasonably should expect that it is
some combination of the two because what our visual
systems are competent to recognize depends on both our
evolutionary history and the surroundings in which we
were raised. But how do we possibly weight one of these
ecological settings over the other in our data collection?

These are difficult questions to answer, but the config-
uration distribution for natural scenes appears to be highly
robust across very different environmental settings. This
is primarily because the notion of shape we have used here
is topological—whereas the distribution of geometrical
shapes may well vary considerably across ecological set-
tings, the distribution of topological shapes is much more
invariant. Informally, nearly any environment with
opaque, macroscopic objects strewn about (and thereby
partially occluding one another) will possess strong cor-
relations with this signature configuration distribution. Be-
cause of the robust notion of shape and the robust con-
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figuration distribution to which it leads in natural scenes,
we largely circumvent these difficult conceptual issues
about how to properly sample from natural images, issues
we probably could not circumvent were we to be using a
geometrical notion of shape.

In an effort to better understand why natural scenes
possess such a robust configuration distribution, in the
second subsection of this section, we take an a priori ap-
proach to understanding the relative frequency of the con-
figuration types. We show that with some very weak em-
pirical assumptions concerning natural scenes, we can
derive which configuration types will be expected to be
more probable than others. In addition to helping eluci-
date why diverse classes of natural scene have similar con-
figuration distributions, this a priori approach allows us
to predict the relative frequency ordering of configuration
types found among visual signs, and we will see that hu-
man visual signs conform nearly perfectly to these
predictions.

Configuration Distribution Measured from Natural
Scenes Is Similar to That for Visual Signs

We measured configuration distributions from three clas-
ses of natural image (for descriptions of the images, see
“Images of Natural Scenes” in the appendix, and for de-
scriptions of the measurements and validation by trained
observers, see “Configuration Measurement and Tests of
Observer Veridicality” in the appendix). The first class of
images we refer to as “ancestral” and consisted of 27 pho-
tographs of savannas and tribal life (see fig. A3 in the
appendix); 535 three-segment configurations were sam-
pled. The second class of images we refer to as “National
Geographic” and consisted of 40 miscellaneous photo-
graphs of rural and small-town life taken from the National
Geographic Web site (see fig. A4 in the appendix); 471
three-segment configurations were sampled. The third
(and final) class of images we call “CGI buildings” and
consisted of 40 computer-generated realistic images of
buildings (see fig. A5 in the appendix); 799 three-segment
configurations were sampled.

The distributions for these three kinds of environment
are shown in figure 64, and one can see that they correlate
very highly with one another, despite the great difference
in the three classes of image. Among the three-segment
configuration types, the correlation of the ranks between
ancestral and National Geographic images is R = 0.90
(P<.000001), between ancestral and CGI buildings is
R = 0.87 (P<.000001), and between National Geo-
graphic and CGI buildings is R = 0.87 (P < .000001). Not
only do the three kinds of image have configuration dis-
tribution ranks that strongly correlate, but also plotting
the frequencies directly against one another leads to best-
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fit power laws of approximately y = x. In particular, the
best-fit power laws are y = 1.054x"* for ancestral versus
National Geographic images, y = 0.935x*”** for CGI
buildings versus ancestral images, and y = 0.931x**** for
CGI buildings versus National Geographic images.

These results strongly suggest that the configuration dis-
tribution for natural scenes does not vary much as a func-
tion of the kind of natural scene. As mentioned earlier,
we believe this is in part because the notion of shape we
have chosen to employ here is topological and largely in-
sensitive to large changes in the kind of environment from
which one samples pictures. Informally, we expect that if
there is intelligent alien life, then so long as they live among
macroscopic opaque objects strewn about, they will prob-
ably have a configuration distribution that is somewhat
similar to those in figure 6a (and our ecological hypothesis
would predict that their visual sign ranks will be similar
to ours).

Recall that our main ecological hypothesis predicts that
the configuration distribution ranks for human visual signs
will match that found in natural scenes. We averaged the
three natural scene configuration distributions from figure
64, and this average is shown in figure 6b (solid line, left).
Also plotted there (dotted line) is the summary configu-
ration distribution for visual signs from figure 2. One can
immediately see that there is a strong similarity between
the ecological configuration distribution and the visual
sign distribution, and most of the signature peaks and
valleys for visual signs are found in the ecological distri-
bution. Figure 6b (right) shows that the ranks of the three-
segment configurations for the natural images and the
visual signs correlate highly with each other (R = 0.88,
P <.000001). The frequencies (in logarithmic space) are
also highly correlated with each other (R = 0.89, P<
.000001). The rank correlation among three-segment con-
figuration types of the summary ecological distribution
with the three different kinds of visual sign alone are also
very strong: nonlogographic writing systems (R = 0.76),
Chinese characters (R = 0.84), and nonlinguistic symbols
(R* = 0.88). To summarize, figure 6a shows us that the
configuration distribution found in natural scenes is highly
robust, being largely invariant across disparate environ-
ments, and figure 6b demonstrates that visual signs and
natural images possess a similar configuration distribution,
consistent with our ecological hypothesis.

A Priori Approaches to Measuring the Configuration
Distribution in Natural Scenes

Here we more closely examine the configuration types in
natural scenes and attempt to understand why the con-
figuration distributions across such diverse classes of image
have such similar distributions. We will be able to, with
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a Pure-subconfigurations (36)
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New relationships in transitive closure (31)

Figure 7: a, All 36 pure subconfiguration relationships, where when a connection exists between two configuration types, the one higher on the
page is a subconfiguration of the other. b, All 54 L-TX subconfiguration relationships. See “L-TX Subconfigurations” in the appendix. ¢, All 18 T-
X subconfiguration relationships are shown. See “T-X Subconfigurations” in the appendix. d, Thirty-one subconfiguration relationships resulting
by taking the transitive closure of the preceding relationships. e, All of the subconfiguration relationships are shown in a single network with 139
relationships. Dotted edges in any of the above graphs (there are a total of three) signify the predictions that are mistaken for the set of visual signs.

either no or weak empirical assumptions, derive a partial
order over the configuration types; that is, for many pairs
of configuration types, we will derive that one configu-
ration type will almost always be more frequent than the
other.

We begin with an ecological relationship so strong that
it must hold across all possible ecological settings: « is a
pure subconfiguration of 8 (o>, 8), just in case « is
one of the configuration types resulting from removing
one or more junction from §. When a junction is removed
from a configuration, we mean only that the junction is
removed but not the segments; one should imagine erasing
just the ink at the junction itself. The configuration type
P (i.e., if the arms of F met at their tips) would not be a
pure subconfiguration of A because removing part of a
junction is not allowed. If o > ., 8, then every time
occurs (i.e., is projected onto the retina), by necessity, so
do all its pure subconfigurations—and not vice versa—

and thus it follows that « is ecologically more probable
than 8. There are 36 pure subconfiguration relationships
among the 32 configuration types with exactly three seg-
ments (fig. 7a). These 36 pure subconfiguration relation-
ships amount to 36 predictions concerning the relative
frequency of the respective pairs of configuration types in
visual signs. For example, configuration type F is a pure
subconfiguration of A, and thus the prediction is that F
configuration types should be more frequent across visual
signs than A configuration types. To ensure that these pure
subconfiguration predictions are not tautologically true for
visual signs, our measurements of configurations excluded
all configurations of a length of three if they were pure
subconfigurations of another configuration of a length
three (see “Configuration Measurement and Tests of Ob-
server Veridicality” in the appendix). Surprisingly, all 36
of these pure subconfiguration predictions are, in fact, true
across visual signs.
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Other strong ecological relationships can be derived
with the help of some defensible empirical assumptions
concerning the relative probability of L, T, and X junctions.
Within the computational vision and visual perception
literature (Guzman 1969; Clowes 1971; Huffman 1971;
Turner 1974; Waltz 1975; Chakravarty 1979; Kanade 1980;
Barrow and Tenenbaum 1981; Binford 1981; Cutting and
Massironi 1998; Kellman et al. 2001), L junctions are typ-
ically the result of contiguous contours, T junctions are
the result of partial occlusions, and X junctions are the
result of object surface adjacencies (such as stacks or tiling
of objects; see Waltz 1975) or partial transparency (Adel-
son and Anandan 1990; Anderson 1997). As one may see
in figure 64, consistent with intuition, Ls and Ts are com-
monplace, having a frequency of the same order of mag-
nitude, whereas Xs are relatively rare. From these empirical
results, it is possible to derive two other kinds of subcon-
figuration (fig. 7b, 7¢), which are defined and justified in
“L-TX Subconfigurations” and “T-X Subconfigurations”
in the appendix. Unlike the pure subconfiguration rela-
tionships discussed earlier—which must be true across all
ecological settings—these two new subconfiguration re-
lationships are only probabilistically expected. The tran-
sitive closure on all three kinds of subconfiguration leads
to 39 new subconfiguration relationships (fig. 7d).

In all, there are a total of 139 LTX subconfiguration
relationships, that is, strong ecological relationships likely
to be invariant across a wide variety of human ecological
settings, shown in figure 7e. These 139 subconfiguration
relationships make predictions about only the configura-
tion types with more than one junction (i.e., configuration
types 10-36) and amount to 40% of all 351 potential re-
lationships. All but four (2.88%) of these 139 relationships
are, in fact, true of the average of our ecological distri-
butions (fig. 6a). More important, among these 139 pre-
dictions, we find near-perfect (three mistaken predictions,
or 2.16%) agreement with the relative orderings across
visual signs, consistent with the ecological hypothesis. The
three mistaken predictions are (F-> ., #), (P>,
drum), and (tent >, not<), shown in figure 6 (three
dotted edges). Among nonlogographic writing systems,
there is just one mistaken prediction ({tent > ., not <)),
among Chinese characters there are three mistakes
((F-> ., #) (P>, drum), and (tent >, not <)), and
for symbols, there are five mistakes ((F-> ., #), (P>
b, drumy), along with (1>, II), (1 > #), and (H >
«, 7). In contrast, 60 of these 139 relationships (43.2%)
are not met by the relative orderings for children scribbles.

sub sub

Discussion

The first result of our article is that there do appear to be
regularities in the (topological) shapes of human visual

signs (see fig. 2). We saw that the configuration distri-
bution is very similar across approximately 100 nonlogo-
graphic writing systems, Chinese, and nonlinguistic sym-
bols. This configuration distribution signature is not a
result of any simple tilings, random line images, or scrib-
bles (see fig. 3). We should reiterate that in this article, by
“shape,” we specifically mean “configuration type,” as
shown in figure 1. This topological notion of shape has
an advantage over more geometrically based notions,
where the specific stroke/contour shape and orientation
would matter: typically, any given human visual sign can
undergo significant variability in its geometrical structure
without losing its identity, but typically, its topology cannot
vary. Nevertheless, why visual signs have the geometrical
shapes they do is an interesting question, and this research
does not touch on this.

Our second result is that the shapes of visual signs ap-
pear to be selected primarily for vision at the expense of
motor. We concluded this by examining shorthand versus
trademarks, where the former is selected for writing at the
expense of vision and the latter is selected for vision at
the expense of the motor system. More generally, we saw
that shorthand does not, but trademarks do, possess the
signature configuration distribution found in visual signs
(see figs. 4a, 5a). We also made this “vision at the expense
of motor” conclusion by comparing the motor complexity
versus the visual complexity of the 36 configuration types.
We found that motor complexity does not correlate with
the frequency ranks of configuration types, whereas visual
complexity strongly correlates (see figs. 4b, 5b). Although
the visual sign signature may be primarily selected for
vision, we believe there are certainly selection pressures
from writing. For example, consider the “drum” config-
uration type (28 in fig. 1). Figure 4b shows that it requires
less motor complexity compared with its neighbors in the
plot, and figure 5b shows that it possesses similar visual
complexity compared with its neighbors. But note that in
visual signs, as shown in figure 2, “drum” tends to be
common compared with many of its neighbors; “drum”
is also nonexistent in natural scenes, as shown in figure
6a, and nonexistent in trademarks, as shown in figure 54,
which are selected for vision entirely, with little or no
motor contribution. This suggests that “drum” may occur
to the extent it does in visual signs primarily because it is
easy to write, not because it is easy to see (and not because
it occurs in natural scenes). Also, we note that our notion
of motor complexity is somewhat natural when writing
by hand but would not be as appropriate for other methods
of producing visual signs, such as chiseling into stone or
incising into clay. In the future, we plan on acquiring
configuration distributions for visual signs grouped on the
basis of the production mechanism and measuring the
differences between the distributions; we expect that al-



though the geometrical shapes would vary considerably as
a function of the kind of implement, the topological shapes
would vary considerably less, being primarily selected for
vision (as we see, e.g., in trademarks, which tend not to
be drawn by hand and yet possess the signature config-
uration distribution).

Our third and final result was that the signature con-
figuration distribution for human visual signs closely
matches that of natural scenes, in that their ranks are
highly correlated. This serves to provide evidence for the
ecological hypothesis that because we have evolved to be
competent at processing the configuration types found in
natural scenes, there has been cultural selection pressure
for human visual signs to disproportionately possess the
naturally common configuration types. We tested this in
two distinct manners. First, we obtained measurements of
the configuration distribution from three classes of image.
We saw that despite these three classes of image being
radically different, the configuration distributions were
similar (see fig. 6a). More important, we demonstrated
that the configuration distribution for these natural images
matches (at the level of rank correlation) very closely the
signature distribution for human visual signs (see fig. 6b).
Second, we presented a theoretical framework for making
a priori and semi-a priori claims about the relative prob-
ability of configuration types in natural scenes. This the-
oretical framework allowed us to make 139 predictions
concerning the relative order of the probability of config-
uration types, as shown in figure 7. We saw that the con-
figuration types found in human visual signs closely con-
form to these 139 predictions, with only several mistaken
predictions, or about 2%.

We foresee at least the following three future directions
for this research. The first is methodological, and it con-
cerns the development and validation of software for au-
tomatically measuring configuration distributions from
images. (Care must be taken because any such software
will rely on image segmentation software, and it is well
known that the resulting segmentation of an image into
contours depends crucially on the choice of algorithm, of
which there are dozens of choices.) Although we have tests
of the objectivity of our human observers (see “Config-
uration Measurement and Tests of Observer Veridicality”
in the appendix), validated software would radically in-
crease the size of our data sets. Second, in this article, we
have focused on the similarities between different classes
of human visual sign. However, there are differences as
well, as can be seen in figure 24, and it is of interest in
the future to quantify these differences and to test whether
the differences can also be found in differences in the
respective ecologies where the visual signs originated and
developed. Finally, the ecological hypothesis of visual sign
shape suggests a new theory of visual stimulus complexity.
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Rather than visual stimulus complexity being the result of
specific stimulus features (like the number of angles) or
of abstract mathematical properties, we propose that visual
stimulus complexity is determined by its ecological prob-
ability: more improbable configuration types are expected
to be the more visually complex ones (i.e., they are com-
plex because they are improbable, not the other way
around). More specifically, in an optimal code for config-
uration types, the length of the code will be proportional
to —log(p), where p is the ecological probability of that
configuration type (something fig. 6a possesses).
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APPENDIX

Supplementary Information on Methods and Theory

Configuration Measurement and Tests of
Observer Veridicality

All configurations measured—whether from visual signs
or images—were carried out by trained observers using
their subjective judgment. The primary author (M.A.C.)
obtained the configuration data from writing systems, Chi-
nese, and shorthand, and two undergraduate coauthors
(Q.Z. and H.Y.) worked full-time for one summer mea-
suring configurations from symbols (Q.Z.), trademarks
(Q.Z.), scribbles (Q.Z.), and natural images (both Q.Z.
and H.Y.). Each undergraduate also subsequently took
measurements from a set of methods-testing images cre-
ated by M.A.C., described later. The primary author
trained the undergraduates to recognize the variety of con-
figuration types; training consisted of measuring data from
one of the data sets for several days under the watch of
the primary author, who would check whether eligible
configurations were missed and give feedback.

For nonlogographic writing systems and shorthand (see
“Writing Systems and Shorthand”), configurations were
measured only from characters with three or fewer strokes,
and for each such character, its configuration type was
determined. Nearly every such character has one unam-
biguous configuration type and is easily measured. For
Chinese writing, symbols, trademarks, and scribbles (see
“Chinese, Nonlinguistic Symbols, Trademarks, and Chil-
dren Scribbles”), each drawing typically possesses more
than three segments, and all subconfigurations of lengths
of two or three were measured from the drawing. For
example, the symbol & possesses two Ls, four Ts, four
Fs, and two Hs, and the symbol 2 possesses six Ls, six Xs,
12 F-’s, and six not<’s. In our analysis, we did not count
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configurations of a length of three if they were subcon-
figurations of some other configuration of a length of
three. For example, Z is a subconfiguration of A, and so
if a A occurred in a character, the three Zs that are sub-
configurations of A would not be included. And in %, F-
is a subconfiguration of not<, and the F-’s would not be
counted in this case. This was done so that the predictions
we make concerning pure subconfigurations later are not
tautological (see main text) and so that the set of three-
segment configuration types possesses frequency distri-
butions that are independent. Measuring configurations
from Chinese, symbols, trademarks, and scribbles required
some practice because a seemingly simple sign like the
double arrow & possesses 12 eligible subconfigurations.
However, once one is trained to spot the many subcon-
figurations of a larger sign, there are almost always no
ambiguities, and the configurations are readily measured.

Measuring configurations from natural images was
more difficult, and the task of measurement was simplified
by placing sampling circles at regular intervals over the
image; having one set of natural images be, in actuality,
computer-generated images (of commercial buildings),
which are easier to measure from than actual pictures; and
having the two trained observers specialize their efforts on
two different kinds of data collection. In particular, one
undergraduate observer (H.Y.) was given the task of con-
centrating just on the single-junction configuration types,
namely, L, T, X, Y, K, ¥, “man,” and “asterisk,” and the
other undergraduate observer (Q.Z.) was given the task
of identifying only the configuration types with exactly
three segments, namely, Y, K, ¥, “man,” “asterisk,” Z, 1,
E H, ..., “camp.” Each judged both the contours and the
configurations and was instructed to judge on the basis
of the local stimulus properties. Single-junction configu-
rations were measured differently from multiple-junction
configurations. Single-junction configurations were mea-
sured by taking all single-junction configurations found
within a sampling circle.

Multiple-junction configurations, however, are not
pointlike like a single junction and can extend across the
image—accordingly, a more subtle measuring technique
is required. Multiple-junction configurations were mea-
sured by finding within a sampling circle the contour near-
est to the center (if there was any contour within the
sampling circle at al), and recording all configurations in
the image (possibly outside of the sampling circle) for
which that contour is a part. The observer made a sub-
jective determination of which contour was nearest to the
center of a sampling circle. For example, suppose that the
top horizontal contour in the double arrow < lies within
a sampling circle and is the nearest to the center of the
circle. The observer would record all of the three-segment

configurations that this contour is a part of. In this case,
the top horizontal contour is a part of two Fs and one H.
This is the case no matter the size of the double arrow,
for example, whether the entire double arrow is small and
lies within a sampling circle or is as large as the entire
image and the top horizontal contour happens to cross
only through the center of the sampling circle. If the exact
same configuration (not configuration type) was found via
two different sampling circles—which could happen if one
contour of a configuration enters one sampling circle and
another contour of the configuration enters another sam-
pling circle—then the configuration was not counted
again.

As discussed in the legend of figure Al, it is possible to
compare the measurements made by these two different
observers and their two distinct measuring techniques over
the eight single-junction configuration types. Figure Al
shows that, for the relative frequencies among single junc-
tions, the two observers—and the two measuring tech-
niques—highly agree with each other. Because of the two
distinct measuring techniques for single and multiple junc-
tions, we normalized the distributions by virtue of the fact
that both observers had an overlapping task of measuring
the three-segment, single-junction configuration types (Y,
K, ¥, “man,” “asterisk”).

In order to test the objectivity of our trained observers’
measurement of configurations, a variety of random line
images were created. First, an image type was created (us-
ing Matlab) called “Random Ls,” which consisted of 100
Ls placed on the page, as seen in figure A2a. Another image
type was created called “Random Ts,” which used the same
parameters as in “Random Ls” but where now the vertex
of each L was severed and one segment was slid randomly
along the other segment, making a random T. A third type
of image created was called simply “Random,” which used
the same parameters again but where now the vertex of
each L was severed altogether, leaving just two randomly
placed lines. The idea behind the three image types is that
the last kind—Random—would consist of only randomly
placed lines and the other two would, although possessing
many random crossings, possess a significant contribution
from Ls and Ts, respectively, for image type Random Ls
and Random Ts. Five images of each type were created,
and the two trained observers measured from them using
the same technique they had used for natural images. For
Random, 240 single-junction configurations and 276
multiple-junction configurations were measured. For Ran-
dom Ls, 272 single-junction configurations and 412
multiple-junction configurations were measured. And for
Random Ts, 273 single-junction configurations and 342
multiple-junction configurations were measured. The
single-junction and multiple-junction configurations were
sampled using distinct methods, but the multiple-junction
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Figure Al: Log-log plot of the frequency of the single-junction config-
uration types for one observer versus that of the other observer, where
one observer (H.Y.) concentrated on single-junction configuration types
and used one measuring technique and another observer (G.Z.) con-
centrated on three-segment configuration types and used a distinct mea-
suring technique. Note that the three-segment configuration types include
the following single-junction configuration types: Y, K, ¥, “man,” and
“asterisk.” Furthermore, each junction in any of the configuration types
with two or three junctions (i.e., configuration types 10-36) is either an
L, T, or X, and thus from their distribution, it is possible to estimate the
distribution for Ls, Ts, and Xs. The latter distribution was normalized
so that the ratio of X to Y was the same as that measured by the other
observer. The eight single-junction configuration types were therefore
measured (at least implicitly) via both measuring techniques and can be
directly compared to one another, which is what this plot shows. The
best-fit (by least squares) solid line corresponds to a relationship of
y = 1.1x"%, very close to y = x (dashed line), showing that the single-
junction configuration type distribution does not vary much between the
two observers and the two distinct measurement techniques. Of the eight
single-junction configuration types, for two of them—“man” and “as-
terisk”—one observer (G.Z.) found no occurrences, whereas the other
observer (H.Y.) found them with frequencies 0.118% and 0.102%. These
are not shown in the log-log plot because one cannot take the logarithm
of 0. Plotting these data on an unlogged plot (not shown) where all eight
single-junction configuration types can be plotted leads to a best-fit equa-
tion y = 1.0303x — 0.0047 (R = 0.99) or, again, very nearly y = x.

observer also measured single-junction configurations via
the multiple-junction technique and the single-junction
and multiple-junction measurements could thereby be rel-
ativized to each other. The two observers were not in-
formed about the manner in which these three types of
image were created. These random images allow tests of
our methods.

First, consider just the Random image type, which con-
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sists of 200 random lines on the page. It is possible to
derive approximately what the configuration distribution
looks like for random line images, and once we determine
this, we can check to see whether our trained observers
measured the mathematically expected distribution. The
measured distribution is shown in figure A2b. For random
line images, the most probable junction type is X. Ts are
comparatively rare because for two lines to make a T re-
quires a coincidental alignment, where one segment abuts
against the side of another segment. Ls are even more
improbable because for two lines to make an L requires
a very coincidental alignment, where one segment’s end-
point happens to touch another segment’s endpoint. We
therefore expect the following to be true about the con-
figuration distribution for random line images: Among the
two-segment configuration types (namely, L, T, and X), X
should be by far the most probable configuration type,
followed by T. This can be seen to be true for the measured
distribution in figure A2b. Among the two-junction con-
figuration types (namely, Z to #), # should be by far
the most probable, followed by configuration types with
one X and one T (namely, T- and FL), and indeed this
can be seen to be true for the measured distribution. Fi-
nally, among the three-junction configuration types
(namely, A to “camp”), “camp” should be by far the most
probable, followed by configuration types with two Xs and
one T (namely, A-), and, again, this can be seen in the
measured distribution in figure A2b. This plot provides
evidence, then, that our trained observers are capable of
measuring distributions significantly different from that
found in visual signs and natural scenes (as we will see
later) and that our measurements are driven by the ob-
jective, underlying distribution. Furthermore, the config-
uration distribution for random line images is skewed to-
ward more complex configuration types, and the fact that
our observers are capable of measuring this provides evi-
dence that our observers are not biased toward simpler
configuration types.

To further test our observers’ measurements, we may
check to see that their distributions for the Random L and
Random T image types are as expected. Recall that these
image types consist of randomly placed Ls and Ts, re-
spectively. However, each is similar to the Random case,
in that they will possess many X junctions because of
random crossovers. Compared with the Random case,
however, we expect Random L image types to have sig-
nificantly more configuration types with L, and we expect
Random T image types to have significantly more config-
uration types with T. Figure A2¢ shows two plots. The first
is Lrand-rand, which shows the difference between the
Random L configuration distribution and the Random
distribution. The second is Trand—rand, which shows the
difference between the Random T configuration distri-
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bution and the Random distribution. Standard error bars
are shown on both. If the observers are objectively mea-
suring the configuration distribution of the Random L and
Random T images, then we expect that the two plots in
figure A2¢ should not significantly differ from one another
except in the following two cases. First, if a configuration
type has just one L and no T, then the Lrand-rand plot
should be significantly above the Trand—rand plot. Second,
if a configuration type has just one T and no L, then the
Trand-rand plot should be significantly above the Lrand—
rand plot. This is, indeed, exactly the case, as can be seen
by examination of the plot here. (Note that we do not
expect configuration types with, say, two Ls and no Ts, or
vice versa, to be more probable because the Random L
images have negligible probability of having configurations
with two Ls.) We also note that the two plots in figure
A2clook nearly identical except when they differ in regard
to having one L or T. And, except for the expected re-
duction in the number of Xs, #’s, and “camp”s, there is
no other loss of more complicated configuration types in
the Random L or Random T image types, suggesting that
the presence of the simpler L or T junctions does not bias
the observers from noticing the presence of the more com-
plicated configuration types (e.g., “asterisk,” which is
found with frequencies of 0.66%, 0.68%, and 1.48% for
Random, Random L, and Random T, respectively).
Finally, we reiterate that one set of our natural images—
the CGI buildings—was computer generated. This was
originally so as to make data collection simpler for our
observers because computer-generated images tend to
have contours that are cleaner and easier to locally identify.
Our thinking was that although data collection would be
simpler, these computer-generated images may neverthe-
less possess a sample of configurations that is represen-
tative of truly natural (urban) images. In regard to meth-
ods, having measurements from both computer-generated
images and truly natural images is useful because the con-
figuration distribution for the computer-generated images
matches very well the distribution for the photographs of
natural scenes; for example, the correlation between CGI
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buildings and the National Geographic images is R =
0.92 (df = 20, P<.000001), and best-fit power law is
y = 0.931x**” (i.e., very nearly y = x). Therefore, any
extra difficulty that our observers encountered in mea-
suring from photographs of natural scenes—compared
with computer-generated images—did not appear to lead
to differences in the resulting distribution.

Writing Systems and Shorthand

Configuration types were taken from all characters with
three or fewer strokes across the 115 writing systems from
Ager (1998) and Daniels and Bright (1996) used in a com-
panion study (Changizi and Shimojo 2005) that included
numerals, abjads, abugidas, alphabets, and syllabaries from
five major taxa—Ancient Near Eastern, European, Middle
Eastern, South Asian, and Southeast Asian—as well as in-
vented writing systems. For our sample of writing systems,
the number of writing systems per taxon correlates highly
(R = 0.90, df = 3, P<.05) with the number of sections
devoted to the taxon of Daniels and Bright (1996), who
wrote one of the most comprehensive books on writing
systems. Only the following 96 systems possessed at least
one eligible character (i.e., having one of the configuration
types used in this study), and there were 1,442 eligible
characters in all: Ahom, Albanian (Elbasan), Ancient Ber-
ber (Horizontal), Arabic, Arabic numerals, Aramaic, Ar-
menian (Eastern), Asomtavruli, Avestan, Bassa, Batak,
Bengali numerals, Brahmi, Buhid, Burmese, Burmese nu-
merals, Carrier, Celtiberian, Cherokee, Chinese numerals,
Cypriot, Cyrillic, Dehong, Dehong numerals, Dhives ak-
uru, Enochian, Ethiopic, Etruscan (archaic), Faliscan, Fra-
ser, Gothic, Greek, Gujarati, Gujarati numerals, Gurmu-
khi, Hanuno’o, Hebrew, Hungarian Runes, Hungarian
Runes numerals, Iberian (Northern), Iberian (Southern),
Kharosthi, Kharosthi numerals, Korean (Hangeul), Kpelle,
Latin (ancient), Latin (all caps), Latin (modern), Lepcha
(Rong), Limbu, Linear B, Marsiliana, Meroitic, Messapic,
Middle Adriatic (South Picene), Middle Persian (Pahlavi),
Mkhedruli (Georgian), Mongolian, Mongolian numerals,

Figure A2: g, Example random line images. Left, random consists of 200 random lines. Middle, random Ls consists of 100 random L junctions.
Right, random Ts consists of 100 random T junctions. The first two are created using parameters identical to those in the Random L image, except
that in the Random T images, each L is broken and turned into a T, with the stem randomly positioned along the length of the top of the T, and
in the Random images, each L is broken altogether, placing the two segments of the L randomly on the page. Circles are the sampling circles used
by the trained observers to measure configurations from these image types. b, Configuration distribution for configurations measured from images
with random lines (i.e., Random images). The distribution is the average of five distributions from five random line images, and the error bars
show standard error. The random line configuration distribution is as expected because X junctions are more probable than T junctions and T
junctions more probable than L junctions. This figure serves to demonstrate that our observers are capable of measuring the expected distribution.
¢, Difference between the Random L image configuration distribution and the Random configuration distribution (solid line; the latter distribution
shown in b). This is called Lrand-rand. Difference between the Random T image configuration distribution and the Random configuration distribution
(dotted line). This is called Trand-rand. Standard error bars are shown. This plot helps to demonstrate that our measurements are modulated as

expected as we modulate the ground truth configuration types.
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Nabataean, Ndjuka, New Tai Lue, New Tai Lue numerals,
Nikhilipi, Nikhilipi numerals, N’Ko, N’Ko numerals,
North Picene, Old Church Slavonic, Old Permic, Oscan,
Pahawh Hmong, Pahawh Hmong numerals, Parthian,
Phags-pa, Phoenician, Pollard Miao, Psalter, Redjang,
Runic (Danish Futhark), Runic (Elder Futhark), Sabaean,
Samaritan, Santali, Santali numerals, Sil’oti Nagri, Somali,
Somali numerals, South Arabian, Syriac, Tagalog, Tag-
banwa, Thaana, Tifinagh, Umbrian, and Varang Kshiti. We
also measured configurations from 121 letters from five
shorthands (Daniels and Bright 1996): Tironian, Char-
acterie, Willis’s Stenographie, Pitman, and Gregg. All of
these writing systems are deemed nonlogographic because
the characters do not stand for whole words; Chinese is
largely logographic, for example. (Numerals are an excep-
tion because numerals stand for abstract numbers. Because
of the close phylogenetic connection between the above
writing systems and many numeral systems, the numeral
systems are placed within this nonlogographic data set.)

Chinese, Nonlinguistic Symbols, Trademarks,
and Children Scribbles

Chinese characters, nonlinguistic symbols, corporate
trademarks, and scribbles typically possess more than three
contours, and we measured all of the eligible subcon-
figurations found within each of these signs. For the data
set from Chinese, the first (simplified) character on each
of the first 340 pages of Manser’s (2003) Pocket Oxford
Chinese Dictionary was sampled, leading to 4,759 config-
urations (2,694 two-segment configurations and 2,065
three-segment configurations). For symbols, 3,538 three-
segment configurations were measured from 1,107 sym-
bols in Dreyfuss’s (1972) Symbol Sourcebook. The symbols
in the book are divided into the following 27 categories,
followed by the number of symbols we sampled from that
category: introduction/basic symbols (uncategorized), 85;
accommodations and travel, 22; agriculture, 141; archi-
tecture, 108; astronomy, 5; biology, 33; business, 99; chem-
istry, 4; communications, 75; engineering, 93; folklore, 84;
geography, 8; geology, 12; handling of goods, 4; home
economics, 26; manufacturing, 54; mathematics, 11; med-
icine, 48; meteorology, 21; music, 13; photography, 7;
physics, 13; recreation, 8; religion, 4; safety, 40; traffic, 36;
and vehicle controls, 53. In total, 863 two-segment con-
figurations were separately sampled from the book, along
with Y configurations with which the two- and three-
segment configuration frequencies were relativized to one
another. For trademarks, 1,085 three-segment configura-
tion types were measured from 126 symbols in Capitman’s
(1976) American Trademark Designs. We separately sam-
pled 318 two-segment configurations from the book, along
with Y configurations with which the two- and three-
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segment configuration frequencies were relativized to one
another. For symbols and trademarks, to qualify for sam-
pling, a symbol must have distinct contours, not be an
obvious representation of a three-dimensional or real-
world object, and not be a duplicate of a previously sam-
pled symbol. For children scribbles, 577 single-junction
configurations and 149 multiple-junction configurations
were measured from 17 scribble drawings by 26-32-
month-old children (Kellogg 1969, pp. 27-30).

Images of Natural Scenes

Three sets of natural images were used: ancestral, National
Geographic, and CGI buildings. The first class of images
we refer to as “ancestral” and consisted of 27 photographs
of savannas and tribal life (see fig. A3); 535 three-segment
configurations were sampled. The second class of images
we refer to as “National Geographic” and consisted of 40
miscellaneous photographs of rural and small-town life
taken from the National Geographic Web site (see fig. A4);
471 three-segment configurations (and 822 two-segment
configurations) were sampled. The third (and final) class
of images we call “CGI buildings” and consisted of 40
computer-generated, highly realistic images of exteriors
and interior views of commercial buildings (see fig. A5);
799 three-segment configurations (and 3,213 two-segment
configurations) were sampled. See “Configuration Mea-
surement and Tests of Observer Veridicality” for more in-
formation on how configurations were measured.

L-TX Subconfigurations

The idea behind L-TX subconfigurations is that adding a
topology-preserving L junction (e.g., adding an L to L to
make Z is topology preserving but not adding an L to Z
to make A) to a configuration type decreases the ecological
probability less than adding a T or X junction. To see why,
consider first the relationship between L and T junctions,
which appear to have ecological probabilities of similar
order of magnitude (fig. 6a). Consider starting with an L
junction and adding to it a topology-preserving L junction;
the resulting configuration type is Z. Instead, consider
starting with that same L junction but adding to it a T
junction; there are two different possible resulting config-
uration types, 1 and F, depending on whether the stem or
the top of the T is appended to one of the arms of the L.
Because the ecological probability of L is of the same order
of magnitude as that of T (fig. 6a), the ecological prob-
ability of Z is of the same order of magnitude as the
ecological probability of (1 or F). Therefore, the ecological
probability of Z will be greater than either of them alone.
Because of this combinatorial difference in the way Ls and
Ts append to configuration types and because Ls and Ts
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are approximately equally ecologically probable, the gen-
eral conclusion is that adding a topology-preserving L
junction will decrease the ecological probability of a con-
figuration type less than adding a T junction.

Now consider the relationship between L and X junc-
tions. As mentioned earlier, L junctions are ecologically
more probable than X junctions (fig. 6a). Furthermore,
each is combinatorially similar (unlike Ts), in that for any
arm of a configuration type on which an L junction can
be appended, there is also only one topologically distinct
way to append an X junction. It follows that adding a
topology-preserving L junction will decrease the ecological
probability of a configuration type less than adding an X
junction.

This motivates the following definition: « is an L-TX
subconfiguration (> | 1x.) Of B, just in case there is a
configuration type vy such that y >, 8 via the loss of N
T or X junctions; y >, & via the loss of at least one
topology-preserving L junction; and the number of seg-
ments in ¢ is no greater than that in 8. By virtue of the
above arguments, if o> 1y, B, then we (statistically)
expect that « is ecologically more probable than .

There are 54 L-TX subconfiguration relationships (fig.
7b), and 50 of these are upheld within the average of the
three ecological distributions from figure 64, the mistaken
predictions being (1> 1xep I)> (F> L ixe D), (F->
crxss o) and (F-> | vop #). In regard to visual sign
structure, these 54 L-TX subconfiguration relationships
make 54 predictions concerning the relative probability of
configuration types across visual signs. All but one
((F- > L 1xes 7)) of these 54 L-TX subconfiguration pre-
dictions are true across visual signs.

T-X Subconfigurations

The idea behind T-X subconfigurations is that adding a
partial-occlusion T junction to a configuration type de-
creases the ecological probability less than adding an X
junction. To understand why, similar to the L versus T
combination, consider starting with an L junction and
adding to it an X junction; the resulting configuration type
is F-. But as mentioned earlier, starting with that same L
junction but adding to it a T junction results in two dif-
ferent possible resulting configuration types, 1 and E. If X
and T junctions were approximately equiprobable, then
F- would be more probable than either 1 or F. However,
because partial-occlusion T junctions are more than twice
as ecologically probable as X junctions, adding a partial-
occlusion T junction to a configuration type should de-
crease the ecological probability less than adding an X
junction.

T junctions are not always the result of partial occlu-
sions, however; in our image data set, T junctions are due

to partial occlusions half (49.4%) of the time. One diffi-
culty we are left with, then, is how to know when an added
T junction is probably a partial-occlusion junction. There
are, in fact, at least three scenarios in which an added T
is probably not a partial-occlusion junction.

First, T junctions can be due to stacks and tilings (e.g.,
abut two cubes against one another), and for this reason,
the probability that a T junction is due to partial occlusion
is expected to fall if there is also an X junction in the
configuration (X junctions being due to stacks and tilings
4.12 times more often than partial transparency in our set
of images). For our image data, the probability that a T
is due to partial occlusion is 0.627 if the T is not adjacent
to an X junction, but the probability falls to 0.146 if it is
adjacent to an X junction. For this reason, we expect that
adding a T junction to configuration type y decreases the
probability less than adding an X junction but only when
v does not possess any X junctions.

Second, consider appending a T junction to a partial-
occlusion T junction. There are four possible resulting
configuration types: H, TE, II, and TL. However, for only
the first three of these cases is the second T junction pos-
sibly the result of partial occlusion. TL (15 in fig. 1) has
been known for more than 30 years to be a simple example
of an “impossible” object subpicture (Huffman 1971). It
is not literally impossible because it can result from certain
surface adjacencies, such as where one cube is placed on
top of another and slid horizontally so that the cubes are
not aligned. However, at most one of the Ts in TL can be
due to partial occlusion. We note that, consistent with this,
there is a deep trough at TL for visual signs and for the
ecological measurements.

Finally, even when an appended T junction can con-
sistently be interpreted as a partial-occlusion junction,
there are cases where this is relatively improbable, as in
when there are occlusion loops, such as in configuration
type “spiral,” where contour ¢, occludes contour c,, which
occludes c;, which in turn occludes ¢, or in configuration
type P’, where contour ¢, occludes c,, which is part of a
contiguous contour with c,, which occludes c;.

With these three scenarios in mind, we say that a con-
figuration possessing a T junction and three or fewer seg-
ments is occlusion probable if it possesses no X junctions,
it is not configuration type TL, and it is neither config-
uration type P’ or “spiral.” This discussion motivates the
following definition: « is a T-X subconfiguration (>
rxsub) Of B just in case there is a configuration type 7 such
that y > ., B via the loss of N X junctions, v >, o via
the loss of at least N T junctions, and « is occlusion
probable. By virtue of the above arguments, if & > 1,
£, then we (statistically) expect that « is ecologically more
probable than (.

There are 18 T-X subconfiguration relationships (fig.



7¢), and all of these are found within the summary eco-
logical distribution. In regard to our ecological hypothesis
for visual sign structure, these 18 T-X subconfiguration
relationships make 18 predictions concerning the relative
probability of configuration types across visual signs. All
but two ((P > ;x., drum) and (tent> ;. not<)) of
these 18 T-X subconfiguration predictions are true across
visual signs.

Literature Cited

Adelson, E. H., and P. Anandan. 1990. Ordinal characteristics of
transparency. Paper presented at the AAAI-90 Workshop on Qual-
itative Vision, July 29, 1990, Boston, MA.

Ager, S. 1998. Omniglot: a guide to writing systems. http://
www.omniglot.com.

Anderson, B. L. 1997. A theory of illusory lightness and transparency
in monocular and binocular images: the role of contour junctions.
Perception 26:419-453.

Arnoult, M. D. 1960. Prediction of perceptual responses from struc-
tural characteristics of the stimulus. Perceptual and Motor Skills
11:261-268.

Attneave, F. 1957. Physical determinants of the judged complexity
of shapes. Journal of Experimental Psychology 53:221-227.

Barrow, H. G., and J. M. Tenenbaum. 1981. Interpreting line drawings
as three-dimensional surfaces. Artificial Intelligence 17:75-116.

Biederman, 1. 1987. Recognition-by-components: a theory of human
image understanding. Psychological Review 94:115-147.

Biederman, I., and E. E. Cooper. 1991. Priming contour-deleted im-
ages: evidence for intermediate representations in visual object
recognition. Cognitive Psychology 23:393—419.

Biederman, I, and P. C. Gerhardstein. 1993. Recognizing depth-
rotated objects: evidence and conditions for three-dimensional
viewpoint invariance. Journal of Experimental Psychology: Human
Perception and Performance 19:1162-1182.

Binford, T. O. 1981. Inferring surfaces from images. Artificial Intel-
ligence 17:205-244.

Capitman, B. B. 1976. American trademark designs. Dover, New
York.

Chakravarty, 1. 1979. A generalized line and junction labeling scheme
with applications to scene analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence 1:202-205.

Changizi, M., and S. Shimojo. 2005. Character complexity and re-
dundancy in writing systems over human history. Proceedings of
the Royal Society of London B 272:267-275.

Clowes, M. B. 1971. On seeing things. Artificial Intelligence 2:79—
116.

Coulmas, E 1991. The writing systems of the world. Blackwell,
Oxford.

The Shapes of Visual Signs over Human History E000

Cutting, J. E., and M. Massironi. 1998. Pictures and their special
status in perceptual and cognitive inquiry. Pages 137-168 in J.
Hochberg, ed. Perception and cognition at century’s end: history,
philosophy, and theory. Academic Press, San Diego, CA.

Daniels, P. T., and B. Bright. 1996. The world’s writing systems.
Oxford University Press, New York.

Dreyfuss, H. 1972. Symbol sourcebook. Wiley, New York.

Endler, J. A. 1992. Signals, signal conditions, and the direction of
evolution. American Naturalist 139(suppl.):S125-S153.

Fairbank, A. 1968. A book of scripts. Penguin, Baltimore.
Guilford, T., and M. S. Dawkins. 1993. Receiver psychology and the
design of animal signals. Trends in Neuroscience 16:430-437.
Guzman, A. 1969. Decomposition of a visual scene into three-
dimensional bodies. Pages 243-276 in A. Grasselli, ed. Automatic
interpretation and classification of images. Academic Press, New

York.

Helfman, E. S. 2000. Signs and symbols around the world. Authors’
Guild Backinprint.com, Lincoln, NE.

Hochberg, J., and E. McAlister. 1953. A quantitative approach to
figural “goodness.” Journal of Experimental Psychology 46:361—
364.

Huffman, D. A. 1971. Impossible objects as nonsense sentences. Pages
295-323 in B. Meltzer and D. Michie, eds. Machine intelligence.
Vol. 6. Elsevier, New York.

Ifrah, G. 1985. From one to zero: a universal history of numbers.
Viking, New York.

Kanade, T. 1980. A theory of origami world. Artificial Intelligence
13:279-311.

Kellman, P. ], S. E. Guttman, and T. D. Wickens. 2001. Geometric
and neural models of object perception. Pages 183-245 in T. E
Shipley and P. J. Kellman, eds. From fragments to objects: seg-
mentation and grouping in vision. Elsevier, Oxford.

Kellogg, R. 1969. Analyzing children’s art. Mayfield, Palo Alto, CA.

Manser, M. H., Z. Yuan, W. Liangbi, R. Yongchang, W. Jingrong, M.
Ping, R. Xiaoping, and S. Qinan. 2003. Pocket Oxford Chinese
dictionary. Oxford University Press, Oxford.

Nakanishi, A. 1980. Writing systems of the world. Tuttle, Rutland,
VT.

Robinson, A. 1995. The story of writing. Thames & Hudson, London.

Ryan, M. J. 1998. Sexual selection, receiver biases, and the evolution
of sex differences. Science 281:1999-2003.

Sampson, G. 1985. Writing systems. Stanford University Press, Stan-
ford, CA.

Turner, K. J. 1974. Computer perception of curved objects using a
television camera. PhD thesis. University of Edinburgh.

Waltz, D. 1975. Understanding line drawings of scenes with shadows.
Pages 19-91 in P. H. Winston, ed. The psychology of computer
vision. McGraw-Hill, New York.

Associate Editor: Michael J. Ryan
Editor: Jonathan B. Losos



