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Random drift and culture change
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We show that the frequency distributions of cultural variants, in three different real-world examples—first
names, archaeological pottery and applications for technology patents—follow power laws that can be
explained by a simple model of random drift. We conclude that cultural and economic choices often
reflect a decision process that is value-neutral; this result has far-reaching testable implications for social-
science research.
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1. INTRODUCTION

Evolution is the process by which the frequencies of vari-
ants in a population change over time. This definition
applies to both biological and cultural change: just as with
genetic variants, the assemblage of cultural variants may
change in frequency over time, whether as a result of
selection, drift or some other evolutionary mechanism
(Cavalli-Sforza & Feldman 1981; Boyd & Richerson 1985;
Neiman 1995; Shennan 2002).

In this paper, we discuss tractable examples of cultural
change in situations where, rather than one dominant cul-
tural variant giving way to another over time, there are
many different choices available at all times. The situation
relates to a classic phenomenon of population genetics,
called random genetic drift, which describes how the
diversity of variants evolve when the dominant process is
one of random copying. A model of genetic drift through
random copying is referred to as the neutral model
(Kimura & Crow 1964; Crow & Kimura 1970) because
the variants are considered to be neutral with respect to
the success of the individual.

We argue that the neutral model is a powerful null
hypothesis for studying cultural evolution because it
allows us to take advantage of the mathematical theory
and predictions provided by population genetics (Crow &
Kimura 1970; Cavalli-Sforza & Feldman 1981; Boyd &
Richerson 1985; Hartl & Clark 1997). Certainly there are
cultural phenomena that do not fit the neutral model; in
these cases it can be used as a null hypothesis to test
against (Neiman 1995; Lipo et al. 1997; Shennan &
Wilkinson 2001; Hahn & Bentley 2003).

As we have suggested before (Bentley & Shennan 2003;
Hahn & Bentley 2003), the neutral model may explain a
much-researched property that characterizes evolving sys-
tems in biology, ecology, economics and human society:
the highly skewed ‘power law’ distribution:

P(v) = C/v�, (1.1)

where � and C are constants, and v � 0. In this paper, we
use P to represent the proportion of variants observed with
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frequency v in the population. The power law in equation
(1.1) appears as a straight line with a slope of �� on a
graph with logarithmic scales on both axes. A power-law
distribution of variant frequencies in a population means
that there are many uncommon variants and a very few
popular variants that are thousands of times more popular
than the majority. In this paper, we show how power laws
characterize the distribution of cultural-variant fre-
quencies in a model of random copying of cultural variants
in three real-world examples, including first names and
patents from the twentieth century and archaeological pot-
tery from the sixth millennium BC. By demonstrating the
power of the neutral model in explaining the number and
distribution of these cultural variants, we conclude that it
can be used to study a wide range of cultural phenomena.

2. CULTURAL DRIFT AND THE NEUTRAL MODEL

In the neutral model, there are N individuals, each
characterized by a behavioural or stylistic variant, such as
a first name or pottery motif (figure 1). At each time step,
each of N new individuals copies its variant from an indi-
vidual randomly selected from the previous time step. To
this very simple process we add innovation (analogous to
genetic mutation) as the continuous introduction of new
unique variants over time. The variable � represents the
mutation rate (� � 1), which in the case of cultural evol-
ution can represent the innovation rate per individual per
time step.

Having defined this simple model, we can predict the
effect of random drift on the statistics of the variants, sim-
ply by knowing the size of a population, N, and the inno-
vation (mutation) rate, �, or even just their product, N�.
For instance, applying the expression given by Gillespie
(1998, p. 27) for a haploid population, the probability that
two variants drawn randomly from the population will be
the same is 1/(1 � 2N�).

In this paper, we explore what can be predicted about
the frequencies of the different variants. For a population
at equilibrium at a single moment in time, Kimura &
Crow (1964) provided an analytical solution for the fre-
quency distribution of the variants, which we express as
the proportion, P, of variants having a frequency v
(expressed as a proportion of all the variant copies in the
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Figure 1. Computer simulation of the neutral model. Each vertical column of squares represents an individual (A, B, …, O),
each row represents a successive time step and different numbers represent different variants. New random numbers represent
innovations (in individuals shaded grey). With three mutations per time step in this example, � = 3/15 = 0.20. Each individual
that does not mutate copies another individual from the previous time step (black lines). For the frequency distribution, we
count all the appearances of each variant over all the time steps, as shown in the columns on the right.

population, the discrete possible values being
v = 1/N, 2/N, 3/N,…, 1). This is given by

P(v) = 2N��1(1 � v)2N��1. (2.1)

Note that the important parameter is the product of N
and �, such that the same equilibrium frequency distri-
bution can result from different population sizes and
mutation rates whose products are the same (Kimura &
Crow 1964; Ewens 1972). This is somewhat counter-
intuitive, but we demonstrate that it is true through com-
puter simulations of the neutral model in § 2a.

Unfortunately, the equilibrium distribution given by
Kimura & Crow (1964) is the distribution at a single point
in time, whereas archaeologists and anthropologists usu-
ally encounter data representing the accumulation of cul-
tural variants over time (e.g. artefacts, yearly record of
applications for patents), and this cannot be compared
with the instantaneous distribution predicted by Kimura &
Crow (1964). Instead, because we are not aware of an
analytical solution for the neutral model in terms of the
frequency distribution of variants accumulated over time,
we use computer simulations to explore the results.

(a) Computer simulation of the neutral model
We use a simple computer simulation of the neutral

model written in a Java-based simulation package called
Repast v. 2.0 (http://repast.sourceforge.net/). As sche-
matically shown in figure 1, the simulation arbitrarily
assigns numerical variants to a population of N individ-
uals, which are then subject to repeated mutation and
copying, while the occurrence of every variant to appear
in the population throughout the run was kept track of
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cumulatively (see Hahn & Bentley (2003) for details).
Each individual in the starting population had a unique
variant. Every time step, the N individuals are replaced
with N new individuals, each of which receives either a
variant copied at random from the previous time step
(with probability (1��)) or a novel variant (‘mutation’;
with probability �).

We ran the neutral model using different numbers of indi-
viduals, N, and mutation rates, �. Under random drift, all
variants are copied with a probability that is proportional to
their frequency at that moment. However, because chance
is still quite important, any new mutation in the drift pro-
cess stands a small chance of rising to a high frequency in
future generations. It is actually expected that some of the
newly created variants will become highly popular at some
point in the future, while most will be lost. The arbitrary
nature of the process means that it is impossible to predict
which variants in particular will become common and which
will be lost. However, if we choose a set of variants that
were ‘born’ during approximately the same time period and
follow their changing frequencies through time, the
expected average frequency stays the same, even though the
standard deviation of variant frequencies increases with age
(Wright 1931; Crow & Kimura 1970).

An elegant pattern emerges from this random process
over time. Figure 2 shows the variant frequency distri-
butions, counted cumulatively over 1000 time steps,
resulting from runs with N = 250 individuals and a range
of �-values. The consistent result of each run is very
nearly a power-law distribution P(v) of variant fre-
quencies, P(v) ~ C/vα, which in each case appears as an
almost straight line, with a slope of ��, on the log–log
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Table 1. Power-law slope, �, for the frequency distribution resulting from different values of N and � showing the average of
five neutral-model runs (±1 s.d. in parentheses). Diagonally linked cells (shaded) have the same value of N�.

� N = 125 N = 250 N = 500 N = 1000

0.004 1.46 (0.02) 1.50 (0.02) 1.53 (0.03) 1.52 (0.01)
0.008 1.50 (0.02) 1.52 (0.02) 1.57 (0.01) 1.58 (0.02)
0.016 1.54 (0.04) 1.55 (0.03) 1.61 (0.04) 1.63 (0.03)
0.032 1.64 (0.05) 1.59 (0.06) 1.70 (0.05) 1.73 (0.06)
0.064 1.74 (0.04) 1.78 (0.08) 1.81 (0.10) 1.91 (0.02)
0.128 1.85 (0.12) 1.99 (0.04) 1.98 (0.02) 2.01 (0.11)
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Figure 2. Distributions of the number of variants
accumulated during a run of the neutral simulation for 1000
time steps, with N = 250 individuals, and six different values
of �. The plot shows the average result from five runs at
each value. Filled squares, � = 0.004; open circles, � = 0.008;
triangles, � = 0.016; crosses, � = 0.032; open squares,
� = 0.064; filled circles, � = 0.128.

plot in figure 2. The distribution is a power law for a wide
range of mutation rates (� = 0.004 to � = 0.128) and
population sizes (N = 125 to N = 1000), such that N� is
not too large. We characterize each distribution by �, the
best-fit linear slope on a log–log plot (table 1), on which
all of the distributions have an r2 value above 0.93. Table
1 shows the values for � for 24 different combinations
of N and � drawn from within these ranges. Note that
for combinations where N� is the same, e.g.
N� = 4 (N = 125, � = 0.032; N = 250, � = 0.016; N = 500,
� = 0.008; N = 1000, � = 0.004), the results show similar
values of � to within their standard deviations (table 1).
This conforms to our expectation (Kimura & Crow 1964;
Ewens 1972) that the variant frequency distribution is not
determined by N or � independently but by their product.

The reason that these model results are consistent only
for small � is that as � gets large the power-law fit
becomes poorer as the tail of the distribution falls off for
high frequencies (figure 2). It can easily be seen why the
power law must break down as � increases, because in the
maximum limit, when � = 1.0, the accumulated frequency
of every variant would be one as all would be replaced by
mutation in every time step.

We see that as N� increases the exponent � increases
(figure 2), and we plot the relationship between N� and
� in figure 3a, which is well fitted by the function

� = 0.1042 ln(N�) � 1.48. (2.2)
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Figure 3. (a) Relationship between the power-law slope, �,
and N�, for the variant frequency distribution resulting from
the neutral model run for 1000 time steps. Each point shows
the average from all the runs with the same value of N�
(table 1); y = 0.1042ln(x) � 1.4755; r2 = 0.959. Error bars
show 1 s.d. (b) Relationship between the variant frequency
distribution and the duration (in time steps) of the
simulation, for the neutral model run with N = 250 and
� = 0.008 (N� = 2). Each point represents the average of five

runs with error bars showing 1 s.d. Squares, 100 time steps;
circles, 500 time steps; triangles, 1000 time steps.

As discussed in § 3, it is extremely difficult to estimate
N� empirically for most real-world data, so we do not
expect to use equation (2.2) to predict � from population
or mutation data alone. It is, however, straightforward to
calculate the ratio of N1�1 for culture-variant group 1 to
N2�2 for variant group 2. For example, given the fre-
quency distribution of pottery motifs at settlement 1, we
might predict the distribution of motifs at settlement 2,
knowing that settlement 2 has a population that is five
times larger than that of settlement 1 (assuming that the
mutation rates are similar) and therefore N2�2/N1�1 = 5.
It is therefore useful to write equation (2.2) once for �1,
N1 and �1, and then again for �2, N2 and �2; the two
equations can be combined and rearranged to give
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Table 2. Analogies between the neutral model and our three real-world examples.

analogy data variants individuals, N mutation rate, �

baby names names new births/time novel names per birth per time
patents citations total citations/time 1/N × newly cited patents per time
pottery motifs motifs pots or households new motifs per household per time

�1 � �2 = 0.1042 ln(N1�1/N2�2). (2.3)

We can use equation (2.3) to predict the power-law
slope, �, for the distribution of variant frequencies, as long
as we are able to determine � for a reference sample, given
the values of N� relative to this reference population. This
will become clearer as we analyse our three datasets.

All simulation runs that we discuss from this point for-
ward were for 1000 time steps, unless otherwise stated.
We find quite simply that if we plot the variant frequency
distribution as a function of the number of copies on the
x-axis, then the duration of the run does not change the
distribution except to extend its tail for longer runs
(figure 3b).

3. DATASETS

We now turn to comparisons of the neutral model with
datasets on three traits, which are quite different in kind
(first names, pottery decoration variants and technological
inventions), in time (prehistoric versus modern) and in
how they were collected (archaeological excavation versus
government recording agencies). These three traits involve
variants that are discretely identifiable and that replicate
with a high degree of fidelity, such that mutations are
obvious, as with patent no. ‘3465784’ or first name
‘Tyler’. While archaeological pottery motifs may not be as
discrete, in this particular case they are easily identifiable,
faithfully replicated and different from one another
(Frirdich 1994), much as the same letters of the alphabet
written by different hands are still recognizable.

Table 2 shows how we view these as cultural variants
in relation to the neutral model. Different first names are
seen as variants, and people given that name are seen as
individuals. Decorative motifs, recognizably reproduced
on different pottery vessels, are seen as the variants,
whereas the pots on which they are found may be seen as
the individuals. With patents, we liken each reference to
another patent within a patent application to an individual
copying a single variant in the neutral model. So we can
let the number of individuals, N, be the total number of
new citations per time interval. Then the mutation rate,
�, is the chance that one of those new references cites a
patent that has never been cited before, which is equival-
ent to the number of newly cited patents per time step
divided by N. Hence N� is approximately the number of
newly cited patents per time step.

After introducing each dataset, we explore it in terms
of the overall variant frequency distribution and by using
one frequency distribution to predict other distributions,
using only equation (2.3).

(a) Dataset 1: first names in the twentieth century
USA

The US Census Bureau (www.census.gov/genealogy/
www/freqnames.html) provides lists of first-name
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Figure 4. Frequency distribution of first names, from 1990
US Census data. The popularity of a name is measured as a
fraction of the US population. The exponent � for male
names (squares) is 1.73 (r2 = 0.990) and for female names
(circles) is 1.93 (r2 = 0.968). Dotted line, N� = 16 model
(100 time steps); solid line, N� = 8 model (100 time steps).

frequencies in a sample of 6.3 million Americans, about
one-fortieth of the US population, from the 1990 US
Census. These census data include 4275 different female
first names and 1219 different male names. An additional
dataset was provided by a US Social Security Adminis-
tration Web site (www.ssa.gov/OACT/babynames/) that
ranks the 1000 most common boys’ and girls’ names in
each decade of the twentieth century, from a sample of
5% of the social-security cards issued.

Like that of the variants in our neutral simulation, the
observed distribution of US Census names (figure 4) exhi-
bits power laws for both female (� = 1.93, r2 = 0.968) and
male (� = 1.73, r2 = 0.990) names. Similarly, Hahn &
Bentley (2003) showed that the distributions of baby-
name frequencies are fitted by power laws for each decade
of the past century, with all r2 values above 0.97 for both
male (� = 1.70 ± 0.07 for the 10 decades) and female
(� = 1.84 ± 0.06) names. We see that the �-values for the
census and baby-name data are not significantly different.
Although the names in the 1990 Census have accumu-
lated over approximately a century (assuming that not
many people are over 100 years old), rather than a decade
as for the baby names, the census distributions are similar
to the decadal baby-name distributions because the shape
of the distribution does not change with the duration of
the neutral simulation (figure 3b), even though the under-
lying frequencies of individual variants do change. Hence
the neutral model fits the frequency distributions from
both the census data (figure 4) and the baby-name data
(Hahn & Bentley 2003) quite well.

Having shown that the neutral model fits the distri-
bution of first names, we would also like to use this model
to predict the frequency distribution of data using
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equation (2.3). In both the census and baby-name cases,
� is higher for female than for male names. Under the
neutral model, this higher �-value can be explained by a
higher mutation rate for females: there is an average of 2.3
new female names versus 1.6 new male names in the top
1000 list per 10 000 births in the population (Hahn &
Bentley 2003). Although we cannot determine N� absol-
utely because the mutation rate depends on our arbitrary
definition of a ‘time step’, we can obtain an estimate of
(N�)female/(N�)male from the census data, which include
4275 different female first names and 1219 different male
names. Plugging (N�)female/(N�)male = 4275/1219 into
equation (2.3), we get �female � �male = 0.1042ln(3.5) or
�female � �male = 0.13. With the values that Hahn &
Bentley (2003) determined for �female and �male, we find
that �female � �male = 0.14 for the decadal baby-name data.
Using the simple relationship in equation (2.3), therefore,
we are able to predict the shape of the distribution of baby
names from the census data.

(b) Dataset 2: pottery motifs from Neolithic
Germany

Our second dataset includes decorative motifs on
archaeological pottery excavated from early farming settle-
ments along a 1.3 km stretch of the Merzbach river, near
Bonn in western Germany. Here, at least 160 long rec-
tangular houses were occupied during a span of over 400
years, ca. 5300 BC–4850 BC (Lüning & Stehli 1994;
Stehli 1989). From the recovered pottery, Frirdich (1994)
identified 35 types of distinctive decorative motif, as well
as a chronology for them (see Shennan & Wilkinson 2001,
fig. 3).

As the prehistoric population changed over these 400
years, there was an approximately one-to-one correlation
between the number of occupied houses and the concur-
rent number of different decorative motifs being used
(Bentley & Shennan 2003, fig. 9). This linear correlation
is expected under the neutral model, which predicts that
the effective number of variants will be proportional to N�.

Figure 5a shows the frequency distributions for motifs
whose first appearances were in different chronological
phases (each phase is approximately a generation, perhaps
25 years). By analogy with the neutral model, the motifs
that first appeared in phases of different ages are anal-
ogous to runs of different lengths (figure 3b). As with the
neutral model, the shape of the power-law distribution for
the pottery motifs does not change, even though the motifs
from phase 6, having been around longest for people to
copy, show a power law covering more orders of magni-
tude (figure 5a). Allowing for the limits of archaeological
data, the pottery motifs from each of the different chrono-
logical phases are fitted well by the neutral model.

There were several distinct settlements within the Merz-
bach Valley during its 400 year occupation, including a
founding settlement (Langweiler 8) and subsequent foun-
dations that probably split off from the initial settlement.
Hence we have a chance to test the effect of different
values of N on the distributions of motif frequencies.
When the motifs are sorted according to settlement, the
frequency distributions are also power laws, with almost
identical values of � (figure 5b; table 3). Figure 5b shows
that simulations of the neutral model with N� = 1
recapitulate the observed distributions. According to
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Figure 5. (a) Frequency distributions of Merzbach pottery
motifs for three different time spans during its 400 year
occupation: diamonds, phases 1–6; crosses, phase 7;
triangles, phases 9–11 (because the data are limited, phases
1–6 and 9–11 were combined). After Bentley & Shennan
(2003, fig. 15). (b) Frequency distributions of pottery motifs
(cumulative over 400 years) for different settlements within
the Merzbach valley (open circles, site 1; squares, site 2;
triangles, site 3; filled circles, site 8) along with the results
from the neutral model (solid line) with N� = 1.

equation (2.3), we should be able to use the �-value for
one settlement to predict the �-values at the other settle-
ments if we know how the different values of N� for the
settlements compare with one another. We can charac-
terize the average values of N� relative to each other by
assuming that � was approximately the same for each
settlement and estimating N from the number of reco-
vered pottery samples per phase (Shennan & Wilkinson
2001, p. 587). Table 3 shows that, even though N varies
widely, with �-values predicted to be smaller for the
smaller settlements, the observed �-values are all about
the same. The simplest explanation for this is that these
settlements, which lay along only a few kilometres of the
Merzbach River, were not distinct when it came to the
way in which potters copied decorations from one ano-
ther’s pots. In this case, there is only one effective popu-
lation of individuals, rather than several distinct smaller
populations, and the highly similar power laws in figure
5b are simply samples from a single power law for the
valley as a whole. This is supported by evidence that the
site LB3 had pottery but not house remains, and yet the
mutation rates for sites LW8 and LB3 paralleled each
other over time (Shennan & Wilkinson 2001, tables 3 and
4). The predictions of the neutral model can thus inform
us about cultural exchange between these prehistoric
settlements.
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Table 3. Estimates of N for different Merzbach sites, and �-values for the power-law distribution of motif frequencies at each site.

predicted � based on �LW8 and pots per
site N (pots per phase) observed � r 2 phase

site 8 (LW8) 375 1.08 0.97 —
site 3 (LB3) 190 1.12 0.90 1.01
site 2 99 1.11 0.94 0.94
site 1 74 1.08 0.94 0.91

(c) Dataset 3: US patents and their citations
The US Patent and Trademark Office (USPTO) pro-

vides an online database of patents and their citations
(www.uspto.gov), which includes text-searchable records
with titles, abstracts, citations, dates filed and dates issued
for patents granted since 1976. In addition to the search-
able online data, the National Bureau of Economic
Research Web site (www.nber.org/patents) provides
downloadable files listing all US patents filed since 1963
(n = 2.92 million) and the patents cited by each
(n = 16.5 million citations in total). There is no imposed
limit on how old the cited patents can be: some even go
a hundred years into the past (Hall et al. 2002). During
the 1980s, when the patent database was computerized,
the average number of citations made per patent
increased, from about five in 1975 to over 10 by the
late 1990s.

For all US patents since 1963, the distribution of the
number of times patents have been cited is not completely
described by a power law (figure 6a). The distribution
starts off flatly at the low end, but becomes a power law
for citations greater than ca. 10, with the exponent � fitted
to this power-law tail equal to 3.75. The flatter low end
reflects the fact that many patents are cited at least a few
times. The absence of a power law at the low end of the
distribution may demonstrate that patents do not com-
pletely conform to the neutral model. This may be
because patent-office regulations enforce the citation of
relevant patents (Hall et al. 2002), leading to patents being
cited that would otherwise be lost by sampling in the
population.

However, the patent data largely suggest properties of
random drift. As figure 7 shows, the distribution of patent
citations conforms to the neutral model in appearing to
remain constant over different periods of time.

To acquire citation data for particular technological
‘niches’, we did title-word searches on the USPTO Web
site for ‘compact disc’ (CD) and ‘automobile’, down-
loaded the reference list from each patent returned in the
search and compiled all references together for each sam-
ple (‘CD’, 6932 total references; ‘automobile’, 16 383
references). We then counted the number of times that
each patent had been cited within the list. Determined in
this way, the ‘CD’ citations show a power law, with
� = 2.96, over two orders of magnitude (figure 6b), and
the ‘automobile’ citations show a slightly steeper power
law, with � = 3.23, over two orders of magnitude (figure
6c). These values of � are too high for us to reproduce
with our neutral simulation: by equation (2.3), we would
have to use an N� value of ca. 1.4 million to reproduce a
power-law distribution with a slope of 2.96. Again, this
may reflect the influence of legal regulations on patent
citations (Hall et al. 2002).
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Figure 6. (a) The frequency distribution of number of times
cited for all US patents since 1963; � = 3.75, r2 = 0.99.
(b) The frequency distribution of number of times cited for
all US patents with ‘CD’ in the title (plus symbols), or
anywhere in the text (circles) of the application;
� = 2.96, r2 = 0.99. (c) The frequency distribution of number
of times cited for all US patents with ‘automobile’ in the
title (plus symbols), or anywhere in the text (circles) of the
application; � = 3.45, r2 = 0.996.

Although we cannot simulate the neutral model for this
dataset, we can estimate the relative differences in N�
between CD, automobile and all patents by comparing



Random drift and culture change R. A. Bentley and others 1449

1 10 100 1000
times cited

pr
ob

ab
ili

ty

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

Figure 7. Distribution of number of times cited for all the
patents, in yearly time slices: squares, 1975; plus symbols,
1985; circles, 1995.

the different rates at which patents have appeared in these
categories. Up to 1983, the rate of all US patent appli-
cations was constant, at ca. 65 000 ± 10 000 yr�1, after
which there was a sharp increase as the rate reached
almost 140 000 yr�1 by the mid-1990s (Hall et al. 2002).
The first patent with ‘CD’ in the title was filed in 1984,
after which the rate of new CD patents increased until it
reached a steady rate of ca. 55 patents yr�1 by about 1991.
The number of patents with ‘automobile’ in the title since
1976 (n = 5358) has averaged ca. 222 patents yr�1, also at
a steady rate.

Given the �-value for one of the power-law distri-
butions, we can infer N� from the relation in equation
(2.3), and then use that to calculate the other values of
N�. If t is the number of time steps per year, then
N� = 65 000/t for all patents, 222/t for ‘automobile’ and
55/t for ‘CD’. We calculate (N�)aut/(N�)CD = 222/55
= 4.04 and (N�)all/(N�)CD = 65 000/55 = 1182, giving �aut

� �CD = 0.15 and �all � �CD = 0.74, from which we
would predict �aut = 3.11 and �all = 3.70. These predic-
tions compare well with the values observed from the data
of �aut = 3.23 and �all = 3.75. The predictions seem parti-
cularly good because we have used so little to make them:
given the citation distribution for CDs, we can predict the
distributions for two unrelated samples of patents, using
only the relative ratios of their filing rates.

It appears from the distributions in figure 6, rep-
resenting sample sizes ranging from the small set of ‘CD’
patents to the set of ‘all’ patents, that the power-law
exponent may increase with sample size. As a test, we also
searched for ‘CD’ and ‘automobile’ anywhere in the pat-
ent, rather than just in the title. While this returned about
an order of magnitude more patents and references in each
case (CD, 6197 patents and 24 780 references; auto-
mobile, 29 483 patents and 98 352 references), the fre-
quency distribution is almost identical in the CD case, and
only slightly different in the automobile case (figure 6);
the power-law distributions did not change simply because
we increased our sample sizes.

4. DISCUSSION AND CONCLUSIONS

We have shown that the frequency distributions of cul-
tural variants can be explained by the neutral model—a
simple model of random copying—for three real-world
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examples: first names, archaeological pottery motifs and
citations of patented inventions.

While the neutral model is unarguably the simplest
model that can explain the observed patterns of cultural
variants, population geneticists have often had a difficult
time distinguishing between predictions of the neutral
model and those made by models with natural selection.
For instance, Gillespie (1977) has shown that models of
selection in fluctuating symmetric environments are often
indistinguishable from a neutral model. Indeed, a protrac-
ted debate over the merits of neutral and selective models
in population genetics has carried on for many years (e.g.
Kimura 1983; Gillespie 1991). One has only to look to
the field of ecology to see the controversy that a neutral
model of biodiversity has sparked (Hubbell 2001; McGill
2003; Volkov et al. 2003).

Additional complexities of applying the neutral model
to cultural change are the meaning and detection of neu-
trality. For population geneticists, finding a population of
variants that are neutral does not necessarily imply that
the trait is unconstrained: neutrality merely means that the
variants of the trait that are observed in the population are
neutral. It does not mean that any imagined variant will
also be value-neutral if introduced into the population
(Kimura 1983). We suggest that this meaning be carried
over into the social sciences, as it helps to clarify the
interpretation of results and correctly distinguishes
between variants and the traits that vary. Identifying truly
unconstrained cultural traits or characters may be quite
difficult. Only by careful examination of the data and
comparison with theoretical predictions can one ascribe
‘neutrality’ to a population of variants or the more restric-
tive designation ‘unconstrained’ to a trait. In this paper,
for instance, we find baby names to be evolving neutrally,
but we have not shown that the name trait itself is ‘neutral’
or ‘unconstrained’. In fact, the lower mutation rate in
male names is probably a result of this trait being more
constrained than female names, i.e. there are pro-
portionally fewer variants that are neutral for males than
for females. Similarly, it may be that specific pottery
motifs, perhaps representing prominent households, were
not neutral (Shennan & Wilkinson 2001; Bentley &
Shennan 2003).

Even considering these details, however, we, like many
before us (Dunnell 1978; Neiman 1995; Lipo et al. 1997;
Bentley & Shennan 2003; Hahn & Bentley 2003), favour
the neutral model for studying cultural change because it
is the simplest null model, with a minimum of free para-
meters, against which hypotheses can be quantitatively
tested using the many tools provided by population gen-
etics (Crow & Kimura 1970; Hartl & Clark 1997). The
frequency distribution of variants is a power law whose
slope can be predicted from the neutral model if just two
quantities are known, the effective population size, N, and
the mutation rate, �. In fact, because what actually deter-
mines the slope is the product N�, only one parameter
need be known, which is the number of new variants
appearing per ‘time step’. Given the slope, �, of the
power-law distribution of a reference sample of variant fre-
quencies, the slope of another sample can be remarkably
well predicted by an empirical relation (equation (2.3))
and the ratio of the new N� value to the N� of the refer-
ence sample. We found that this prediction method
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worked well with baby names, pottery decorations and
patents, giving further evidence that these are changing
neutrally. It may be somewhat surprising that, for oft-cited
patents, the way patents are cited reflects a neutral model.
But if scientists can copy each other’s papers in a seem-
ingly random way (Simkin & Roychowdhury 2003), per-
haps so can inventors or users of the World Wide Web,
because links to Web sites are power-law distributed (cf.
Barabási & Albert 1999; Albert & Barabási 2002).

We thank A. Diaz-Guilera for comments in the early stages of
writing and assistance in retrieving patent data from the Inter-
net. We also thank J. Gillespie for valuable comments and criti-
cism.
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