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Abstract

Clinical interviews administered to third- to sixth-graders explored children’s conceptualiza-
tions of rational number and of certain extensive physical quantities. We found within child
consistency in reasoning about diverse aspects of rational number. Children’s spontaneous
acknowledgement of the existence of numbers between 0 and 1 was strongly related to their
induction that numbers are inWnitely divisible in the sense that they can be repeatedly divided
without ever getting to zero. Their conceptualizing number as inWnitely divisible was strongly
related to their having a model of fraction notation based on division and to their successful
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judgment of the relative magnitudes of fractions and decimals. In addition, their understanding
number as inWnitely divisible was strongly related to their understanding physical quantities as
inWnitely divisible. These results support a conceptual change account of knowledge acquisi-
tion, involving two-way mappings between the domains of number and physical quantity.
  2005 Elsevier Inc. All rights reserved.
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1. Introduction

Students’ diYculty in acquiring the concept of rational number has been well docu-
mented. Part of the problem is notational: What does “1/56” mean? Gelman (1991)
showed that many elementary school children cannot explain why a given fraction is
written with two numerals. Not only do children fail at explicitly explaining the math-
ematical role of the numerator and the denominator in representing fractions, their
lack of understanding is also revealed in simple ordering tasks, such as determining
whether 1/56 is larger than 1/75. Many researchers in diVerent countries have found
that this diYculty persists for some children through the high school years (e.g., Behr,
Wachsmuth, Post, & Lesh, 1984, for the US; Kerslake, 1986, for England; and Nesher
& Peled, 1986, for Israel). Similarly, researchers have found persistent diYculty in
ordering two decimals such as 2.09 and 2.9 (Carpenter, Corbitt, Kepner, Lindquist, &
Reys, 1981; Gelman, 1991; Moss & Case, 1999), placing a number like .685 on a num-
ber line that goes from 0 to 1 (Rittle-Johnson, Siegler, & Alibali, 2001), and lining up
decimals such as 5.1 and .46 so as to add or subtract them (Hiebert & Wearne, 1986).

Such persistent problems with understanding fraction and decimal notation,
including seemingly simple operations over fractions and decimals, may actually
reXect deep conceptual diYculties in understanding rational number. Gelman (1991)
and Hartnett and Gelman (1998) described the task faced by elementary school chil-
dren as one of conceptual change within their concept number. Throughout the pre-
school and early elementary school years, children create, and entrench a rich
concept of counting numbers, positive integers as represented by the integer list and
base 10 notation, and as participate in operations of addition and subtraction
(Fuson, 1988; Gelman & Gallistel, 1978). The representation of the positive integers
is built by the child through mastering the counting algorithm, which in turn imple-
ments the successor relation among integers. For each positive integer, there is an
answer to the question “Which is the next one?” The answer is: that number plus one,
which happens to be the number named by the next word in the count list. In this sys-
tem of interrelated concepts and operations, addition is conceptualized in terms of
counting and multiplication is understood as repeated addition. It is these conceptual
relations and operations that constitute the concept number for the child in preschool
and in the early elementary grades.

Concepts are individuated both by their extensions (i.e., the entities in the world
they pick out), and also by their conceptual role (i.e., the network of interrelated
concepts and mental operations that deWne them) and coming to see “1/3” as a
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speciWc number on a par with “1” and “3” involves changes with both. Clearly, the
extension of number is vastly expanded when it comes to include rational numbers,
and the conceptual framework in which rational number is embedded diVers from
positive integers in every respect detailed above. Rational numbers are based on divi-
sion (“x/y” means “x divided by y”) and division itself is diYcult to understand in
terms of integers. Multiplication of integers can be modeled as repeated addition of
whole numbers, but division of integers cannot always be modeled as repeated sub-
traction of whole numbers. To create a representation of rational number, children
must develop the following interrelated understandings: that there are numbers
between any two successive integers, including between 0 and 1; that the relation
between the numerator and denominator in fractions is one of division; and that
rational numbers are inWnitely divisible and thus there are an inWnite number of them
between successive integers. For rational numbers, unlike integers, there is no answer
to such questions as “What is the next number after 1/2?”

Given an entrenched understanding of natural number, based on the successor
relation and the counting algorithm, it is not surprising that all of these interrelated
representations of rational number are diYcult for children to achieve. Three lines of
argument support the claim that coming to represent rational number involves con-
ceptual change. First, the claim rests on the conceptual analysis of the diVerence
between natural number and rational number sketched above, as well as the histori-
cal fact that integers were culturally constructed vastly earlier than rational numbers.
Second, teaching students about fractions and decimals is notoriously diYcult (e.g.,
Bright, Behr, Post, & Wachsmuth, 1988; Gelman, 1991; Hartnett & Gelman, 1998).
There is strong resistance to change; even after instruction, the errors children make
in tasks designed to reveal their understanding of fractions are typically whole num-
ber intrusions. For example, they say that 1/56 is smaller than 1/75 because 56 is
smaller than 75, that 2.9 is smaller than 2.09 because 29 is smaller than 209 (Gelman,
Cohen, & Hartnett, 1989; Moss & Case, 1999). Third, various reXections of concep-
tual understanding of fractions—most notably awareness of the existence of numbers
between integers, understanding the relation between numerator and denominator in
a fraction as one of division, and being able to judge the relative magnitudes of frac-
tions and decimals—develop in parallel across children (see Gelman, 1991, for a
review of such evidence). These Wndings, conducted across children and in diVerent
studies, provide indirect evidence for an analysis of conceptual understanding in
terms of interconnected principles, deWnitions, and operations. One goal of the pres-
ent study is to probe directly for such consistency within the individual child, as the
conceptual change position presupposes networks of ideas that are diVerently inter-
related on both sides of the divide.

A second goal of the present study is to probe directly for an aspect of rational num-
ber understanding that has been less frequently investigated in the literature—chil-
dren’s understanding of the density and inWnite divisibility of rational numbers—to see
if this aspect of rational number understanding coheres with the others detailed above.
This is a critical aspect of rational number understanding that conXicts with children’s
initial whole number understanding: for rational numbers, unlike whole numbers,
there is no next (unique) number in the sequence. Consequently, the Wnding that this
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aspect of understanding rational number develops in parallel with others would sug-
gest that children are restructuring the conceptual foundation of number, rather than
acquiring more piecemeal knowledge about fractions and decimals.

Prior research has suggested that children’s earliest understanding of inWnity is as a
property of processes (being endless), rather than as an amount (or number-like object)
that has an order of magnitude (Fischbein, Tirosh, & Hess, 1979; Monaghan, 2001).
There is converging evidence from diVerent in depth clinical interviews that many
grade 1 and 2 and the majority of grade 3 and 4 students can be led to induce and artic-
ulate the principle that there is no biggest integer and that counting numbers can
always be extended by adding one (Evans, 1983; Falk, Gassner, Ben-Zoor, & Ben-
Simon, 1986; Hartnett & Gelman, 1998). To date, however, there has only been one
study that probes elementary school children’s understanding of the inWnite divisibility
of numbers (Falk et al., 1986). These researchers engaged elementary school students in
playing repeated rounds of a two-person game where the winner was the person who
picked the smaller positive rational number. Children were asked to choose whether
they wanted to go Wrst or second, to explain why, and to judge how long the game
could go on or whether it would ever end. On a conceptual change analysis, under-
standing the inWnite divisibility of positive rational numbers would be expected to lag
behind students’ understanding of the inWnite extendability of positive integers, and
there was strong evidence that this was the case in Falk’s study. Many students who
understood the endlessness of the positive integers in the context of an earlier game (in
which the winner was the one who chose the largest number) did not understand the
endlessness of the positive rationals in the context of the game of choosing the smallest
(positive) number. However, by grades 5–7 (ages 10–12), all the children chose to go
second in the game, and the majority realized that the game was endless.

In our study we probed elementary school students’ understanding of inWnite
divisibility even more directly: by involving them in a thought experiment about the
repeated divisibility of number. In particular, they were asked whether if we started
with a (positive) number 2 and kept dividing it in half and in half again, whether we
would ever get to 0 and why. Tirosh and Stavy (1996) engaged 10th and 12th grade
students with a very similar number thought experiment (given in written test for-
mat) and found that almost all these high school students conceptualized number as
inWnitely divisible. However, they did not give this task to younger students or
explore when this understanding develops. We elaborated on their task in several
ways, including asking a series of warm-up questions probing children’s ideas about
the existence and density of fractional numbers and the meaning of fraction and dec-
imal notations. We also asked the questions in clinical interview rather than written
test format. An important aspect of using clinical interviews is that it provides the
opportunity to rephrase questions that are not understood, to clarify student mean-
ings, and to probe student understanding more fully. Further, by asking students a
sustained series of questions about fractional numbers, it may help students induce
the inWnite divisibility of number in the course of the interview.

If the mastery of rational number requires conceptual change within the concept
of number, the question arises where the new concept comes from. As in all cases of
conceptual change, if the ancestor concept (counting number) is truly diVerent from



C.L. Smith et al. / Cognitive Psychology 51 (2005) 101–140 105
its descendent (rational number) then the descendent cannot be represented in terms
of the principles and operations that deWne the ancestor. Learning mechanisms that
underlie such increases of representational power in the course of conceptual change
have been dubbed “bootstrapping processes” and have been sketched by many histo-
rians and philosophers of science, as well as cognitive scientists (e.g., Carey, 2004;
Gentner et al., 1997; Hartnett & Gelman, 1998; Kuhn, 1977; Nersessian, 1992). At its
heart, bootstrapping makes use of various modeling techniques—creating analogies
between diVerent domains, limiting case analyses, thought experiments, and so on. It
also makes use of the human symbolic capacity to represent the relations among
interrelated concepts directly while only partially interpreting each concept in terms
of antecedently understood concepts.

Many authors have suggested that the bootstrapping process through which the
new concept of rational number is created involves modeling number in terms of rep-
resentations of physical quantity, including protoquantitative operations such as
splitting, sharing, folding, comparing, and perceiving proportionality, that draw on a
qualitative appreciation of some aspects of the inferential role of rational number
and ratios (Confrey, 1994; Moss & Case, 1999; Resnick & Singer, 1993). Indeed, Mix,
Levine, and Huttenlocher (1999) have shown that even preschool children can
manipulate models of physical quantities based on parts and ratios (e.g., know that
1/2 a circle added to 1/4 a circle yields 3/4 a circle). Both Confrey and Moss and Case
have implemented curricular interventions based on these ideas. Moss and Case
(1999), for example, argued that by the time children are 9 or 10 years of age, they
have a global representation of proportions and a numerical structure that supports
splitting and doubling. They further argued that coordinating these is part of the
bootstrapping process that yields the construction of fractions and decimals. Their
innovative fourth grade curriculum began with percents, as a way of numerically rep-
resenting the qualitative notions of full, nearly full, half full, and nearly empty, as
these apply to a beaker of water. Students were led to coordinate intuitive under-
standing with learned numerical halving strategies. The curriculum then moved to
2-place decimal notation, and Wnally to fraction notation. Rigorous pretests and
posttests demonstrated that students using this curriculum out performed students
using standard curricula.

The mapping between number and physical quantity is likely to be particularly
important in children’s coming to appreciate the existence of rational numbers, and
that they are repeatedly divisible. Although young children may deny that there is a
number between 0 and 1, they can see that a line of unit length exists between the ori-
gin and the Wrst unit on a number line. Measurement activities support the existence
of quantities such as 1 and 1/2 in. and 1/2 a cup. Once children see how, through mea-
surement, natural number maps onto quantities such as length, their representation
of the physical quantity as repeatedly divisible could—if the mapping were main-
tained—support understanding number as repeatedly divisible.

These bootstrapping processes presuppose that young children conceptualize
some physical quantities as repeatedly divisible so that their representations of
physical quantity can serve as a base domain for modeling rational number. But if
the mapping from physical quantity to number is to support the induction of inWnite



106 C.L. Smith et al. / Cognitive Psychology 51 (2005) 101–140
divisibility of number they need something more: namely, they need to conceptualize
some physical quantities as continuous and hence inWnitely divisible. Of course, physi-
cal quantities are not actually inWnitely divisible, both because of technical limita-
tions and because matter is particulate, but there is much evidence that before
children understand that matter is particulate, they conceive of matter as continuous,
in the sense of being completely solid with no spaces within.1 For example, prior to
learning about atoms, grades 5–7 students draw continuous models of liquids and are
puzzled to Wnd that the volume of an alcohol and water mixture was less than the
sum of the volume of each liquid (Snir, Smith, & Raz, 2003). Further, when engaged
in thought experiments about the repeated halving of matter, many grade 8–12 stu-
dents claim that the process is endless: there is always some matter left to divide
(Smith, Maclin, Grosslight, & Davis, 1997; Stavy & Tirosh, 2000). Similarly when
engaged in thought experiments about the serial dilution of sugar or salt water solu-
tions, students often claim that there will always be some sugar or salt left in the solu-
tion (Tirosh & Stavy, 1996). Indeed, so strong is their intuition that matter is
continuous, one of the major diYculties students have in initially learning about
atoms is accepting the basic tenet that there can be empty space between atoms (Lee,
Eichinger, Anderson, Berkheimer, & Blakeslee, 1993; Novick & Nussbaum, 1978;
Pfundt, 1981).

However, children do not initially consider matter continuous in this sense, nor do
they initially conceive of weight or diVerent aspects of spatial extent (e.g., length,
area, or volume) as continuous magnitudes. For example, in their pioneering studies
of young children’s conceptions of space, Piaget and Inhelder (1956) engaged young
children in thought experiments about the successive division of a variety of types of
geometric Wgures (e.g., lines, squares, and other shapes) and argued that the ability to
abstract from Wnite sensory experience and to imagine that geometric Wgures are con-
stituted of an inWnite number of points only emerged with the development of formal
operational thought in early adolescence (ages 11–12). They found that younger ele-
mentary children could only consider a few subdivisions with the Wnal imagined ele-
ment preserving the same form as the original (i.e., a subdivided line was still a line, a
subdivided square a square). Older elementary school children could imagine a larger
number of subdivisions, but they still could only consider a Wnite number. By early
adolescence, Piaget and Inhelder claimed that children were able to imagine the inW-
nite divisibility of a Wgure and to consider the Wnal elements as dimensionless points.
Later work has replicated some aspects of Piaget and Inhelder’s results with
geometric objects, as well as pointed out some inherent limitations and contradic-
tions in children’s understanding of inWnity that were neither explored in nor the

1 This continuous conception of matter is a useful “intermediate” construction on the way to construct-
ing an atomic–molecular theory for two reasons. First, it supports students’ conceptualizing amount of
matter, weight, and volume as true extensive (additive) quantities that are diVerentiated from density, an
intensive quantity (weight per unit volume), and learning about measurement of weight and volume. Sec-
ond, it allows them to understand the claims of the particulate nature of matter more clearly: students need
to be able to imagine that matter might be continuous all the way down to understand the atomic hypoth-
esis as a very diVerent theoretical proposal.
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focus of Piaget and Inhelder’s work2 (Fischbein et al., 1979). Later work has also
examined children’s reasoning about the inWnite divisibility of material objects (Fis-
chbein, Tirosh, Stavy, & Oster, 1990; Smith et al., 1997; Stavy & Tirosh, 2000), the
amount of space occupied by material objects, and their weight (Carey, 1991; Smith,
2005; Smith et al., 1997). The latter work has conWrmed that many students can at
best imagine only a limited number of divisions before the matter disappears and the
amount of weight or occupied space goes to zero. For example, Carey (1991) found
that many  4- to 10-year-old children claim that one can see all the steel in a solid
cylinder of steel, and that if one kept dividing a piece of matter in half, one would
eventually arrive at a piece that weighed nothing and took up no space, and indeed,
contained no matter! Young children’s understanding of the continuity of matter and
the space it occupies, however, reliably preceded their understanding of the continu-
ity of weight.

Based on these Wndings as well as other Wndings about children’s diVerentiation of
weight and density, some researchers have argued that coming to conceptualize mat-
ter, weight, and volume as continuous physical quantities involves change within
these concepts (Carey, 1991; Smith, 2005; Smith et al., 1997). The core of each concept
is reanalyzed: moving from unanalyzed features that are directly perceptible (e.g.,
matter as something that you can see, feel and touch; weight as felt weight) to more
abstracted and analyzed features grounded in a network of assumed conceptual inter-
relationships (e.g., matter as an underlying constituent of objects; weight as a funda-
mental property of matter). In addition, there are key conceptual diVerentiations (e.g.,
length, area, and volume are diVerentiated as spatial dimensions; occupied space is
diVerentiated from unoccupied space; weight and density are diVerentiated as exten-
sive and intensive physical magnitudes) and coalescences (e.g., solids, liquids, and
gases are coalescenced in a general concept of matter). DiYculties imagining that mat-
ter could be continuous and diVerentiating extensive from intensive physical quanti-
ties can persist into the middle school years (grades 6–8). SigniWcantly, an important
part of the conceptual change process in the domain of matter may involve cross-
domain mappings with number. For example, in curricular interventions with grade 8
students, children’s intuitive understanding of number as an extensive variable has
been used as part of the bootstrapping process that supports conceptual change in
their concepts of matter, weight, and density (Smith, 2005; Smith et al., 1997). Stu-
dents were involved in cross-domain mappings as they constructed measures of
weight and volume. Further, when challenged to explain how they knew a grain of
rice must weigh something even though it felt like it weighed nothing at all, some

2 As Monaghan (2001) points out, Piaget and Inhelder were more interested in children’s understanding
of a continuum than of inWnity per se. Indeed they never explored children’s conception of inWnity in their
work on number. He argues that the study of students’ concepts of inWnity would need to address a variety
of aspects: “inWnity as a process and as an object; inWnity as a number; inWnitesimals; inWnite sequences and
series; real numbers; the language of inWnity; reasoning with the inWnite; contexts (numeric/geometric,
counting/measuring, and static/dynamic)” (Monaghan, 2001, p. 244). His interviews with 16- to 18-year-
olds studying A-level mathematics do just that and reveal the deep diYculties, inconsistencies, and wide gap
between even these older students’ ideas about inWnity and the formal treatments provided in mathematics.
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students made mathematical arguments to convince their classmates. For example,
they might argue if a single grain of rice weighs nothing at all, 0 g, then one cannot
explain the palpable weight of 50 grains of rice, because 0 + 0 is still 0.

We have thus come to a conundrum: Mapping number onto physical quantity
supports an inWnitely divisible understanding of number only to the extent that the
physical quantity is understood as continuous and inWnitely divisible. Similarly, map-
ping a physical quantity onto number supports an inWnitely divisible understanding
of that physical quantity only to the extent that number is conceptualized as inWnitely
divisible. Although the logic seems circular, we know that this is how analogy works
when part of the bootstrapping processes that support conceptual change in mathe-
matics and science. For example, work in the history of science indicates that explor-
ing the mapping between the mathematical and physical realms often contributes to
conceptual change within both (e.g., see Nersessian’s, 1992 case study of Maxwell).

Thus, the third goal of our study is to more closely examine the relation between
children’s understandings of inWnite divisibility both within and across diVerent
domains, by testing the same children with thought experiments about number, mat-
ter, weight, and occupied space. If the conceptual changes in the domains of number
and physical quantities are mutually supportive, as has previously been conjectured,
then the two developments should largely go hand in hand. At the same time, if it is
true that children use insights about the continuity of some physical quantities (e.g.,
amount of matter) to support their reconceptualization of number as inWnitely divisi-
ble, then we should Wnd evidence for slightly earlier understanding of the inWnite
divisibility of these physical quantities than of the inWnite divisibility of number.

Previous work has investigated the relation between older (grades 7–12) students’
reasoning about the inWnite divisibility of a variety of mathematical entities (e.g., a
number, a line) and their reasoning about the inWnite divisibility of material entities
(e.g., a copper wire) (Fischbein et al., 1990; Tirosh & Stavy, 1996). In general, these
researchers have found a great deal of consistency in students’ reasoning about both
kinds of entities, with students either asserting that both or neither are inWnitely
divisible, especially at the younger ages (grade 7). Tirosh and Stavy (1996) interpret
this consistency as evidence that students are developing the general intuitive rule
“Everything can be divided” during this time—a rule that initially applies indiscrimi-
nately to mathematical and material entities. Where inconsistencies occur, it is pri-
marily in judging numeric and geometric entities to be inWnitely divisible and
material objects to reach a stopping point, based on students’ increasing awareness of
the atomic nature of matter during the high school years. One limitation of the intui-
tive rules account, however, is that it provides no real developmental story of how
these intuitive rules develop and no characterization of the domain to which the intu-
itive rule applies. Presumably, application of the intuitive rule is constrained by the
ways students conceptualize the entity in question. It is unlikely students think every-
thing can be divided—for example, that they think a thought or belief can be
divided—but only entities that are conceptualized as having some extent. An advan-
tage of conceptual change approach is that it oVers detailed analyses of the changing
components of the concepts themselves as well as of the cross-domain bootstrapping
processes that might lead to their restructuring.
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At present there is no systematic data on within child consistency in reasoning
about the inWnite divisibility of numeric and material entities during the elementary
school period, the time when an understanding of the inWnite divisibility of number
and matter is presumably constructed. We suspect that during this age period, chil-
dren’s belief in the inWnite divisibility of a material object might actually precede their
understanding of the inWnite divisibility of number—a hypothesis that we are directly
testing in the present study.

2. Method

2.1. Participants and design

Fifty children (22 third and fourth graders and 28 Wfth and sixth graders) from ele-
mentary schools in the Boston area took part in the study. The participants were 24
boys and 26 girls of diVerent racial, ethnic, and socio-economic backgrounds, though
they were predominantly white. The third and fourth graders ranged in age from 8 to
10, while the Wfth and sixth graders ranged in age from 10 to 12. All of the third and
fourth graders, as well as many of the Wfth and sixth graders, were interviewed during
the latter part of the school year.

We selected this age group to study because this is the time when learning about
fractions, decimals, and the operation of division is an important focus of their
math curriculum, giving children the opportunity to construct an understanding of
rational number. Although children have been exposed to commonly used frac-
tions such as 1/2, 1/3, or 1/4 in grades one and two, the primary emphasis in the
early grades is on learning about whole numbers and the operations of addition
and subtraction. The few activities involving fractions in grades one and two center
on dividing a whole region into equal size parts and deWning and recognizing frac-
tions as parts of a whole (or parts of a group). By the third grade, however,
curriculum goals include not only using a fraction to name a part of a region or a
part of a group, but also using visual models to reason about fractions, knowing
how to create equivalent fractions, how to compare and order like and unlike unit
fractions (i.e., fractions whose numerator is one), and realizing that when the whole
is divided into more parts, the size of each fractional part becomes smaller. This is
also the grade when the curriculum Wrst introduces students to decimal notation,
which is related to their knowledge of fractions. In the fourth grade, students are
expected to extend their facility with fractions and decimals to be able to compare
and order decimals and non-unit fractions (e.g., 3/4 and 5/6) as well as use visual
models and knowledge of equivalent fractions to add and subtract fractions that
have unlike denominators. Important topics that are introduced as part of the Wfth
and sixth grade curriculum include how to Wnd the lowest common denominator,
how to convert between percents, fractions and decimals, and how to multiply and
divide fractions and decimals.

Students took part in a one-on-one interview that tapped conceptual
understanding of matter and number. They were asked to justify all judgments and
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the interviewer asked follow up questions if their reasoning was not clear. The tasks
described below lasted a total of about 10 or 15 min, and were part of a longer inter-
view that took about 30 min, with the Matter-related tasks preceding the Number-
related tasks. With the exception of ideas about the inWnite divisibility of number and
physical quantities (which are not part of the curriculum at any grade), all the key
ideas we assessed about fractions—existence of fractional numbers, explanation of
the meaning of fraction notation, and ordering of unit fractions—were included in
the third grade curriculum and continued to be reviewed and elaborated in the cur-
ricula at subsequent grades. The third grade curriculum introduces students to deci-
mal notation, which is related to their understanding of fractions. Explicit ordering
of one and two place decimals is only part of the curriculum starting in grade 4.

In the analyses that follow we are not concerned with grade eVects per se, but with
assessing coherencies in student reasoning about number throughout this period as
students are gaining more experience with fractions and decimals. In some analyses
we grouped the younger (grades 3 and 4) students together and compared them with
the older (grades 5 and 6) students both to show rough grade trends and also to test if
coherency was equally strong at both periods. Note that prior to making these group-
ings, we checked that there were no diVerences in coherency between the third and
fourth graders or between the Wfth and sixth graders in reasoning about number.

2.2. Tasks

2.2.1. Matter Tasks3

The Matter Tasks explored students’ qualitative understanding that all matter
must take up space and have weight, and that matter continues to exist even as it is
divided into smaller and smaller pieces. Smith and her colleagues have shown these
tasks to be successful at diagnosing key elements of children’s commonsense theories
of matter—namely that amount, spatial extent, and weight of matter are continuous,
extensive physical quantities (Carey, 1991; Smith, Carey, & Wiser, 1985; Smith et al.,
1997). Students were asked a progressive series of questions that led them from think-
ing about macroscopic pieces of Styrofoam they held in their hands to thought exper-
iments about pieces that are too small to see or hold. The progression also moved
from questions about amount of matter to questions about the weight and amount of
space occupied by the Styrofoam.

2.2.1.1. Continuity of matter tasks. Students were handed a piece of Styrofoam
about the size of a cracker and were asked whether it was a lot of matter, a tiny bit

3 These Matter Tasks were preceded by a matter sorting task (described more fully in Smith et al., 1997)
that began the interview. In the matter sorting task, children reXected on which entities they thought were
made of matter and which were not (e.g., a rock, a grain of sugar, air, water, heat, a shadow, a wish, and a
dream) and provided justiWcations for their classiWcation. This task functioned as a valuable warm-up by
helping students to clarify the distinction between entities that were made of some physical stuV and those
that were not. However, it is not relevant to the issue of whether students conceptualize physical quantities
as continuous, and so will not be discussed further here.
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of matter, or none at all. Then they were given another much smaller piece, about
the size of a BB pellet, and were asked the same questions. Students were next
engaged in a thought experiment about matter. They were asked whether there
could be a piece of Styrofoam too small to see with the naked eye. (Most students
said yes; if they said no, we told them that there could be, and reminded them of the
things we could only see with microscopes.) We then told them to imagine that it
was possible, using a laser beam or some other tool, to divide that tiny piece in half.
They were asked if we kept dividing that piece in half, would the Styrofoam matter
ever disappear completely? That is, would it ever reach a point where there was not
any matter left to divide? If they said simply that you would have to stop dividing,
students were asked follow-up questions to determine if they believed that there
would no longer be anything left to divide, or that the experiment would be techni-
cally not feasible. In the latter cases, they were encouraged to consider that such
practical considerations could be overcome (e.g., “imagine that there was a
machine that could cut anything, no matter how small it was”) and then re-asked
the question.4

2.2.1.2. Continuity of weight and space tasks. We then asked students questions about
the properties of matter. We again gave them the two macroscopic pieces of Styro-
foam and for each asked whether it weighed a lot, a tiny, tiny bit, or nothing at all.
They were next asked whether a piece of Styrofoam too small to see would take up
any space and whether it would weigh anything. Students who had answered yes to
either of these questions were then engaged in thought experiments about the proper-
ties of small pieces of matter. We asked them whether, when we repeatedly divided
the piece in half, we would eventually get to a piece that did not take up any space
and whether we would get to one that did not weigh anything. Students’ understand-
ings of each property of matter were tested and analyzed separately, for Carey (1991)
found that children’s understanding that matter has weight lags behind their under-
standing that matter takes up space.

2.2.2. Number tasks
2.2.2.1. Density of numbers between 0 and 1. We began exploring students’ under-
standing that there are an inWnite number of numbers between any two integers by
asking them whether there are any numbers between 0 and 1. If they said no, they
were asked if 1/2 is between 0 and 1. If they said yes, they were asked to give an

4 Because we were concerned with probing for students’ understanding of continuity of matter and phys-
ical quantities rather than students’ capacity to distinguish mathematical and material entities, we encour-
aged students to ignore physical limitations in our probing. This fact as well as the fact that we were
questioning students in the context of a clinical interview may explain why we get more older elementary
school children judging that matter is inWnitely divisible than researchers in Israel found with grade 7 chil-
dren (Fischbein et al., 1990; Tirosh & Stavy, 1996). They presented their task as a written test item and did
not ask students to consider that they had tools available to divide the smallest piece. Another reason for
the diVerence in the Wndings is that some Israeli students, beginning in the seventh grade, denied inWnite di-
visibility because of the existence of atoms. In general, the US students we have worked with in grade 8
seemed less aware of the existence of atoms and did not bring them up in this context.
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example. We then asked how many numbers there are between 0 and 1. We use the
term “density” rather than “continuity” because the rational numbers are not contin-
uous; there are irrational real numbers between them. Of course, we do not attribute
to children the distinction between continuity and density, nor any knowledge of irra-
tional numbers, nor any knowledge of diVerent orders of inWnity of the rationals and
the reals.

After probing students’ understanding of fraction and decimal notation (see
Fraction and Decimal Quantity Comparisons and Explanation of the Meaning of
Fraction Notation tasks described below), students were engaged in a thought
experiment about the inWnite divisibility of numbers similar to the thought experi-
ment about the divisibility of matter. They were told that if we started with the
number 2 and divided it in half, we would get the number 1, and that if we divided
that in half, we would get the number 1/2. They were then asked whether we could
keep dividing numbers in half forever, or whether we would get to a point where
there would be no number left to divide. Finally, they were asked whether, as they
were dividing, the numbers were getting bigger or smaller, and whether we would
ever get to the number 0.5

In prior work, Gelman et al. (1989) found that the majority of kindergarten and
second grade children denied the existence of numbers between 0 and 1, as is consis-
tent with their understanding number as counting numbers. However, the few chil-
dren who said “yes” were not explicitly questioned further to Wnd out whether they
thought there were only a limited number of numbers between 0 and 1. In the present
study, we are able to assess whether such children conceive of number as inWnitely
divisible by also asking children “how many” numbers are between 0 and 1 and
involving them in the number thought experiment.

2.2.2.2. Fraction and decimal quantity comparisons. Students were shown two cards,
one with “.65” written on it, and the other with “.8” written on it, and they were
asked to pick which is the larger number and to explain the basis for their judg-
ment. This was repeated with “2.09” vs. “2.9” and again with “1/75” vs. “1/56.” This
task tapped both students’ understanding of the notational conventions as well as
their reasoning about the underlying quantities represented. These comparisons
have been used widely in the prior mathematics literature (e.g., Gelman, 1991;
Moss & Case, 1999) where it has been found that students frequently make whole
number errors.

2.2.2.3. Explanation of the meaning of fractional notation. Students were shown a
single card with “1/7” written on it and asked: “Why are there two numbers in a
fraction? What do the two numbers mean?” Follow-up questions were asked if

5 Of course, mathematicians would argue that in the limit, one does reach zero through inWnite iteration
of division by two. We included this question, however, as a further way of probing if elementary students
thought the process was truly endless, not as a way of probing if they understood the mathematical idea of
a limit. That is, we suspected that students who said that the process is endless would also say that one
would never get to zero.
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necessary to clarify student meanings. For example, if students simply said that one
number is the numerator and the other is the denominator, they were asked what
the numerator or denominator referred to. Or if they simply said that it referred to
a pie, they were asked what it was about the pie that the two numbers referred to.
In coding our data, however, we found that some student responses were ambigu-
ous as to whether they were referring to division or subtraction and had not been
fully probed. Hence, this is a task where even more follow-up probing would be
desirable.

This task was used in an unpublished study by Cohen, Gelman, and Massey
(reported in Gelman, 1991) in which responses were coded as irrelevant/tautological
or as showing some insight. We expanded the coding of student responses to make a
threefold distinction among incorrect/irrelevant responses, ambiguous responses, and
responses that were based on an articulated division model.

3. Results

3.1. Children’s concepts of number

Our results were Wrst analyzed to assess multiple aspects of children’s under-
standing of number that must change as children move from an initial concept of
number as positive integer to a concept of number that includes fractions and deci-
mals (rational number). This change entails their coming to understand that: (a)
there are numbers between 0 and 1, or any two integers (fractions and decimals);
(b) the two numerals in a fraction are related through a process of division and rep-
resent a unique point on the number line; and (c) there are an inWnite number of
fractions or decimals between any two integers and that these numbers are inW-

nitely divisible. At issue is when children come to develop these understandings
and how these understandings relate to one another. If children’s numerical con-
cepts cohere in inter-deWned networks, then these changes should go hand-in-hand
and mutually support each other as children develop an understanding of rational
number.

3.1.1. Understanding the inWnite divisibility of number
3.1.1.1. Existence of numbers between 0 and 1. Logically, children must Wrst recognize
the existence of numbers between 0 and 1 before they can make the inductive leap
that numbers are inWnitely divisible. Thus, the Wrst question addressed was whether
children realize that there are any numbers between 0 and 1, and, if so, how many
they think there are.

Thirty-one out of the 50 children (62%) spontaneously agreed that there are num-
bers between 0 and 1. The remaining children (38%) initially said there were no num-
bers between 0 and 1, as is consistent with their interpreting number as “whole
number.” However, when speciWcally asked about the number “1/2,” most of these
children then acknowledged there are some numbers between 0 and 1, though six
children (12%) continued to deny it.
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3.1.1.2. Density of numbers between 0 and 1. Although most children acknowledged
the existence of some numbers between 0 and 1, either spontaneously or after being
probed, this Wnding does not mean that they thought there were an inWnite number of
numbers between 0 and 1. Two further probes were relevant to the issue of their
understanding the density and inWnite divisibility of number: one an initial open-
ended probe in which we asked them how many numbers there were between 0 and 1,
and the other the series of directed questions in our Number Thought Experiment.

When asked “How many numbers are there between 0 and 1?,” 36% (18 out of 50)
thought there were only a few numbers between 0 and 1. That is, these children gave
some number less than 10, typically 1, 2, or 3. Altogether almost half (48%) of the
children in the sample said that there were either no numbers between 0 and 1 or at
most only a few.

In contrast, 15 children (30% of the sample) spontaneously said there were an inW-
nite number of numbers between 0 and 1, in response to our initial query of how
many numbers were between 0 and 1. The majority used the word “inWnite,” one used
the word “continuous,” and the remainder used semantic equivalents such as “num-
bers go on forever,” “you cannot stop decimals,” or there is “an endless amount of
numbers.”

The remaining 11 children (22% of the sample) said that there were “lots,” “hun-
dreds,” “millions,” or even “trillions” of numbers between 0 and 1, but stopped short
of saying there were an inWnite number. Indeed, the one child who said “trillions”
made clear that he thought “trillions” was the highest number, and that you could
not go higher than that. For the other children who said “lots” it was ambiguous
whether they thought there are a Wxed or inWnite number of numbers between 0 and
1. Their answers on the Number Thought Experiment (to be discussed next) help
resolve this issue.

3.1.1.3. Number thought experiment. The Number Thought Experiment was designed
to probe more thoroughly whether students thought there were an inWnite number of
numbers between 0 and 1 by asking them whether they thought that one could divide
forever without ever getting to zero. Children’s answers to the Number Thought Exper-
iment were scored in conjunction with their initial answers to the question about
whether there were any numbers between 0 and 1 and if so how many. We found two
coherent patterns of response (Get to Zero; Never Get to Zero) consistent with diVerent
underlying conceptions of number, and a third pattern labeled “Transitional.”

The Get to Zero pattern is consistent with an understanding of fractional numbers
as occupying Wnite, separate, points on a number line. Students were coded as having
shown this pattern if:

(a) they claimed that there are at most only a limited number of numbers between
0 and 1; and,

(b) they claimed that when one repeatedly divided a positive number in half, one
would get to 0, consistent with confusing repeated division, with repeated sub-
traction. Some even claimed that one would get to 0 and then pass to negative
numbers.
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The Never Get to Zero pattern is consistent with conceptualizing number as an
inWnitely divisible quantity. Students were coded as having shown this pattern if:

(a) they claimed there to be an inWnite number of numbers between 0 and 1, or if
they did not use the word “inWnite,” at least said that there are lots; and

(b) they claimed that you could keep dividing numbers forever, that the numbers
would get smaller and smaller, but would never get to 0.

Finally, the Transitional pattern was deWned to capture the judgments of students
who did not have a consistent way of conceptualizing number: some of their judgments
were consistent with thinking of number as inWnitely divisible while others were not.

Students varied widely in their understanding of the inWnite divisibility of number.
Overall, 50% of the sample (25/50) had the Get to Zero pattern, consistent with
believing there were only a Wnite number of fractions; 38% of the sample (19/50) had
the Never Get to Zero pattern, consistent with having a Wrm understanding of the
inWnite divisibility of number; and 12% of the sample (6/50) had Transitional pat-
terns which showed no consistent conceptualization.

Most students with the Get to Zero pattern initially said that there were no numbers
between 0 and 1 and then acknowledged grudgingly, when probed directly about “1/2,”
that there might be a few. The following excerpts are representative of their responses:

S3 (Grade 3):
(Any numbers between 0 and 1?) No.
(How about one half?) Yes, I think so.
(About how many numbers are there between 0 and 1?) A little, just 0 and half,
because it is halfway to one.
(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) No because if you just took that half a num-
ber, that would be zero and you can’t divide zero.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) Yes.

S9 (Grade 3):
(Any numbers between 0 and 1?) No.
(How about one half?) Yes, because it’s not a number.
(About how many numbers are there between 0 and 1?) 1/2 and there are four
other pieces. Quarters. There are numbers before 0, negative numbers.
(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) Yes, it’ll soon be just a black line, just num-
bers.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) Yes, because if you have 8 parts, then you minus
one and minus one until you get a minus 8, then you’ll get 0.

S18 (Grade 4):
(Any numbers between 0 and 1?) No.
(How about one-half?) Yes.



116 C.L. Smith et al. / Cognitive Psychology 51 (2005) 101–140
(About how many numbers are there between 0 and 1?). One: one-half.
(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) No, I think you might stop. I don’t think that
there are that much numbers.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) Yes because 0 is, most people know it is the last
number and if it is then you eventually get to it.

S39 (Grade 6):
(Any numbers between 0 and 1?) No.
(How about one-half?) Yes.
(About how many numbers are there between 0 and 1?) Wait a minute. There’s
1/2, 1/3, 1/1, 1/over all the way up to 10.
(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) No, after 1 is 0. 0 is nothing else. If kept divid-
ing 1/2, then 1/1, then 0/1, and 0/0 and that’s it.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) Yes 0 is the last number.

Only three students scored with the Get to Zero pattern acknowledged that there
were lots of numbers between 0 and 1, but they still confused repeated division with
repeated subtraction and ultimately thought you’d get to 0.

In contrast, students with the Never Get to Zero pattern had an entirely diVerent
way of responding to these questions, consistent with conceptualizing number as inW-
nitely divisible. Indeed, all of these students explicitly acknowledged that there were
an inWnite number of numbers between 0 and 1 (or some semantic equivalent such as
an endless amount) at some point during the questioning. The following excerpts give
the Xavor of their responses:

S12 (Grade 3):
(Any numbers between 0 and 1?) Yes.
(Can you give an example?) 0 and a half.
(About how many numbers are there between 0 and 1?). 0 and a half, 0 and 1/4, 0
and 3/4, 1/8, 2/8, and on and on and on. (How many?) Lots.
(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) Yes we could just keep on going because if we
ran out of numbers we could just make up names for them because numbers go
on forever and ever and there’s no such thing as counting up to the highest
number.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) No.

S20 (Grade 4):
(Any numbers between 0 and 1?) Yes.
(Can you give an example?) 1/2, 1/4, 1/3, .5 fractions of a number.
(About how many numbers are there between 0 and 1?). It’s continuous. I guess,
you can keep going and going.
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(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) Yes. Numbers just keep on going.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) No because if numbers are getting small, you can-
not measure them, and anyway, you just keep doing the same thing.

S35 (Grade 5):
(Any numbers between 0 and 1?) Yes.
(Can you give an example?) 1/2 or .5.
(About how many numbers are there between 0 and 1?). A lot.
(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) Yes, there always has to be something left
when you divide it.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) No because there is an inWnite number of numbers
below 1 and above 0

S41 (Grade 6):
(Any numbers between 0 and 1?) Yes.
(Can you give an example?) .5
(About how many numbers are there between 0 and 1?). 99, no more, inWnity.
(Suppose you divided 2 in half and got 1; and then divided that number in halfƒ.
Could you keep dividing forever?) Yes there is an inWnite amount of numbers.
(Are the numbers getting bigger or smaller?) Smaller.
(Would you ever get to zero?) No, you have zero in your problem; it would get
before other numbers but never to the actual number zero.

Only six children had patterns that seemed to reXect inconsistent reasoning about
these issues across the diVerent questions and were scored Transitional. They might
be beginning to develop an understanding of number as inWnitely divisible, but they
still were not reasoning consistently from this perspective. Two initially said there
were an inWnite number of numbers between 0 and 1, but then answered some of the
questions in the Number Thought experiment incorrectly. One said as you divide
pieces in half, the fractions are getting bigger and hence you never get to zero; the
other said as you divide the pieces in half you eventually DO get to zero. Two said
that there were lots of numbers between 0 and 1, but then hedged on the questions in
the thought experiment (e.g., maybe get to zero, I’m not sure how to divide fractions.)
Finally, two said there were only 3 numbers between 0 and 1, but then said you can
keep dividing forever and never get to 0.

Table 1 shows the relation between the students’ grade level and their understand-
ing of the inWnite divisibility of number. Only 9% of third and fourth graders (2 out
of 22) thought that numbers were inWnitely divisible, whereas 61% of Wfth and sixth
graders (17 out of 28) did so. This diVerence is statistically signiWcant (X2 (1) D 13.94,
p < .001, N D 50). A major re-organization in children’s conceptions of number
appears to occur between fourth and Wfth grade. This is not to say, of course, that the
transition is always accomplished by Wfth and sixth grade; 39% of Wfth and sixth
graders showed either Get to Zero or Transitional patterns.
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These data are consistent with those of Falk et al. (1986). Using a very diVerent
method (the game in which the player who chooses a smaller fraction wins), they
showed that many, but not all, Wfth–seventh graders understood that they should
want to go second in this game because they could always construct a fraction
smaller than any somebody else had chosen. Further, these children sometimes justi-
Wed their choice by appealing to the inWnite divisibility of number.

3.1.2. Existence of fractional numbers and inWnite divisibility of number
Although it is logically possible that students would be aware of the existence of

fractional numbers long before they induce that numbers are inWnitely divisible, our
data suggest that the two developments actually go hand in hand. Table 2 shows the
strong relation between spontaneously acknowledging the existence of numbers
between 0 and 1 and understanding the inWnite divisibility of number in the further
questions. Whereas all the students with Never Get to Zero and Transitional patterns
spontaneously acknowledged there were numbers between 0 and 1, only 24% (6 of
25) of those with Get to Zero patterns did so, X2 (1) D 25.41, p < .001, N D 50. This
Wnding is consistent with their having very diVerent underlying conceptions of num-
bers. For students with Get to Zero patterns, positive integers are the prototypical
numbers. In contrast, for students with Never Get to Zero and Transitional patterns
fractions and decimals are numbers on a par with counting numbers.

The above coherence is not simply an eVect of diVerences between third to fourth
graders and Wfth to sixth graders. All students who had given Never Get to Zero or
Transitional judgments spontaneously said that there are numbers between 0 and 1,
whether they were third and fourth graders or Wfth and sixth graders. In contrast,
only 29% of the third and fourth graders who showed Get to Zero patterns (N D 17)

Table 1
Children’s understanding of the inWnite divisibility of number as a function of grade

Grade n Divisibility of number pattern

Never Get to Zero Transitional Get to Zero

n % n % n %

3 and 4 22 2 9 3 14 17 77
5 and 6 28 17 61 3 11 8 28

Overall 50 19 38 6 12 25 50

Table 2
The relation between pattern on number thought experiment and spontaneous judgment of the existence
of numbers between 0 and 1

Note. N D 50.

Pattern on number thought experiment Any numbers between 0 and 1? (spontaneous)

Yes No

Never Get to Zero 19 0
Transitional 6 0
Get to Zero 6 19
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and only 13% of the Wfth and sixth graders who showed Get to Zero patterns (N D 8)
did so. The third and fourth graders were not signiWcantly diVerent in this regard
than were the Wfth and sixth graders, as indicated by Fisher exact test.

3.1.3. Conceptual understanding of fractions and fractional notation
When children do acknowledge there are some numbers between 0 and 1, it is

common for them to mention only simple fractions, such as 1/2 or 1/4. What is not
clear from such a response is the extent to which they have formed an analyzed con-
cept of fractions that is based on division and understand the rationale behind frac-
tional notation. As mentioned in the introduction, previous researchers have
repeatedly found that early in learning about fractions, children often misread and
misunderstand many aspects of fractional notation in terms of their initial concept of
whole number. In this section, we consider children’s understanding of fractional
notation, using tasks developed by previous researchers.

3.1.3.1. Fraction quantity comparisons. The Wrst way we assessed children’s conceptual
understanding of fractions and fractional notation was by asking them to make the
judgment: which is larger: 1/75 or 1/56? In keeping with past research, we reasoned that
if children think of each fraction as two (unrelated) whole numbers rather than deWning
a new unique number through the process of division, they will judge 1/75 as larger and
use whole number justiWcations (e.g., 1/75 is greater than 1/56 because 75 is greater than
56). In contrast, if they understand that “1/75” means “one divided by 75,” they will
judge 1/56 as larger and give relevant explanations (e.g., if you divide a whole into 75
pieces, each part is smaller than if you only divide it into 56 pieces.)

We found that 46% of the students (23 of 50) erroneously judged that 1/75 was a
larger number than 1/56. In all cases their qualitative justiWcations indicated that they
saw the two numbers in a fraction as two distinct whole numbers rather than related
by division.

In contrast, 54% of the students (27 out of 50) made the correct judgment that 1/75
was smaller than 1/56, with all but one of them articulating a relevant justiWcation.
Many envisioned what happened when you cut things into pieces; for example, “It’s
better to have 1/56 of a pizza than 1/75; the larger the bottom number the smaller the
fraction.” Others simply articulated the general rule—“The smaller the denominator
the larger the fraction.” Note in the latter explanation, students explicitly acknowl-
edged a distinction between the numeric value of one part of a fraction and the whole
fraction, consistent with their understanding that 1/75 deWnes one particular number,
not two.

3.1.3.2. Explanation of the meaning of fraction notation. The second way we probed
children’s understanding of fractional notation was, following Gelman (1991), by
asking them to explain why there are two numbers in a fraction such as “1/7.” If chil-
dren understand a fraction in terms of division, then they should be able to give
meaning to the two numerals vis-à-vis an explicit division model either by directly
stating that a fraction is merely one number divided by another or by explaining that
the denominator indicates the number of parts the whole is divided into, and the
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numerator indicates the number of parts of that size. Students’ explanations were
coded for whether they indicated that students held no model or an incorrect model of
fractions, held a division model, or whether they were ambiguous.

Overall, 43% of students (21 out of 49)6 either had no model of a fraction or an
incorrect model. Those with no model typically said uninformative things, such as
“because they are there,” “two numbers equal a fraction,” “I forget,” “don’t know—
I can’t explain” or “top is the numerator, bottom is the denominator.” Those with
incorrect models all made reference to representations or concrete situations that
they had witnessed in teaching, but they provided mistaken interpretations of what
the numbers stood for, and thus what concept had informed the teacher’s lesson.
Fractions are often discussed in terms of cutting pies or other objects and some stu-
dents thought the “1” referred to the “whole” and the 7 to the slices (e.g., “1 means 1
pie; 7 equal pieces” or “one whole thing, 7 slices”). Others gave incorrect mathemati-
cal formulations relating the two numbers in terms of subtraction or multiplication
rather than division (e.g., “One is how many you are taking away; 7 is how many you
have,” “1 out of 7 is 6,” or “1 times 7 D 1/7”). Still others incorrectly focused on irrel-
evant observable features of these situations such as color, shading, or shape rather
than division relations (e.g., “If 7 blocks, only color one out of 7”; “Top number is
how many pieces are shaded, bottom number is the whole thing”; or “1 is how many
you have and what the shape is”).

In contrast, 24% of the sample (12 out of 49) were able to articulate a clear division
model in which they explained that the denominator refers to how many pieces the
whole has been divided into and the numerator refers to how many such pieces one
has. Note that we required an explicit analysis of the meaning of the two numbers in
a fraction, not some vague reference to a part of a whole. For example:

• “The number of parts taken from the whole and the number of parts in the whole”
• “The top number is how many you used; bottom number is how many there are

altogether in total; how many pieces to make 1”
• “One is the numerator; 7 is the denominator. The numerator is how many you

have and the denominator is how many it takes to make 1”

If students had simply said it refers to “one piece of pizza” or “one piece of pie”
we would not have counted it as a clear division model, because they might simply be
thinking of a speciWc object rather than the process of division.

Finally, 31% of the sample (15 out of 49) gave ambiguous explanations—one’s that
could be consistent with either a division or subtraction interpretation. Most typi-
cally, these children said “1/7” means “1 out of 7” which could mean either 1 divided
by 7 or 1 taken from a set of 7.

3.1.3.3. The relation among the two fraction notation tasks. To the extent that both
fraction notation tasks probe whether students understand fractional notation as

6 One student was inadvertently not asked this question.
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expressing division, we should expect children’s performance on the two tasks to be
related. The results conWrm this expectation (see Table 3). Students who gave a Clear
Division explanation of fractions were signiWcantly more likely to make the correct judg-
ment about the relative magnitudes of fractions than were those students who failed to
give such an explanation, X2(1)D15.26, p<.001, ND49. Strikingly, all 12 children coded
as having a Clear Division Model were correct in their comparison judgments. Equally
strikingly, 86% of the children (18 of 21) who were coded as having either No Model or
an Incorrect Model of fractions made incorrect comparison judgments. Finally, slightly
over half of those students (10 of 16) whose explanations of the “1” and “7” in “1/7” had
been coded as Ambiguous made correct comparison judgments while the rest (6 of 16)
made incorrect judgments. We suspect that those who made correct judgments had
probably interpreted “1 out of 7” correctly as division, while those who made incorrect
judgments probably made incorrect subtraction interpretations.

A follow-up analysis conWrmed that the coherence was not an artifact of an associa-
tion of each task with age. All children (whether third or fourth graders or Wfth or sixth
graders) who had a clear division model explanation of fractional notation, could also
correctly order the two fractions. In contrast, only 17% of third and fourth graders who
had incorrect or no explanation of fractional notation (ND 12) and only 11% of Wfth
and sixth graders who had incorrect or no explanation of fractional notation (ND9)
were correct in ordering the fractions. This is not a signiWcant diVerence between ages,
as indicated by Fisher Exact Test. The only diVerence among the two grade levels was
the patterning of students with “Ambiguous” answers on the fraction explanation task:
89% of the Wfth and sixth graders with Ambiguous answers (ND9) were correct in
ordering the fractions as compared with only 28% of the third and fourth graders stu-
dents with Ambiguous patterns (ND 7) (p < .03, Fisher Exact Test).

3.1.4. Conceptual understanding of decimal notation
Fractional numbers can, of course, also be expressed in decimal notation. Stu-

dents’ understanding of decimal notation calls for a place value analysis of tenths,
hundredths, and so on, and so should be intimately tied to their developing a concep-
tual understanding of fractions and fractional notation. Just as students initially mis-
interpret fractional notation in terms of whole numbers, so too should students
initially misinterpret decimals, and consequently use the rules for comparing whole
numbers when comparing decimals.

Table 3
The relation between the fraction quantity comparison and explanation of fraction tasks

Note. One student was not asked for an explanation of the meaning of two numbers in a fraction; hence
the N for this table is 49 rather than 50.

Pattern on fraction quantity comparison Explanation of meaning of two numbers in fraction

Clear Division 
Model

Ambiguous 
Model

Incorrect or No
Model

Correct judgment with relevant justiWcation 12 10 3
Incorrect or questionably correct judgment 0 6 18



122 C.L. Smith et al. / Cognitive Psychology 51 (2005) 101–140
Students were asked to make two relative magnitude judgments: .65 vs. .8 and 2.09
vs. 2.9. About half of the students (23 of 50) answered both decimal problems cor-
rectly. The other half (27 out of 50) made at least one error with fully 20 of the 27
making erroneous judgments on both problems. There was no diVerence in the diY-
culty of the two problems.

Analyses of student justiWcations revealed that the contrasting judgments reXected
diVerent interpretations of decimal notation. In all cases, those students who judged
both comparisons correctly also provided justiWcations that showed that they were
making an appropriate interpretation of decimal notation. Many gave an explicit anal-
ysis of the place value meaning of decimals in terms of tenths and hundredths. Others
implicitly recognized place value by transforming one of the numbers so that both had
the same number of decimal places before making the comparison (e.g., adding a 0 so
the comparison was between .65 and .80 rather than .8). Some interpreted the decimals
as percents (65% vs. 80%) or as money (65 cents vs. 80 cents). Finally, a few determined
which decimal was closest to the next whole number (i.e., 2.9 is closer to 3), a process
that may have involved visualizing these numbers along a number line.

In contrast, the students who made at least one incorrect judgment, invariably
accompanied this judgment with a justiWcation that indicated that they had misinter-
preted the decimals as whole numbers. For example, on the .65 vs. .8 comparison,
they argued that .65 was larger because 65 is a bigger number than 8. Similarly, on the
2.09 vs. 2.9 comparison, they either argued that 2.09 was larger because 209 is a bigger
number than 29, or they said both numbers had the same value because the 0 does
not matter. Further, the few correct judgments that were made were accompanied
either by comments that they were guessing or by justiWcations that indicated they
got the right answer for the wrong reason. Thus, children with only one incorrect
judgment had no more insight than children with both incorrect judgments.

3.1.4.1. Relation between understanding decimal and fraction notation. As was pre-
dicted, there was a strong relation between students’ conceptual understanding of
fractional notation and their understanding of decimal notation (see Table 4). The
majority (73%) of those who correctly ordered fractions also correctly ordered both
decimals, while the majority (83%) of those who incorrectly ordered fractions also
incorrectly ordered at least one of the decimals (X2 (1) D 15.99, N D 49, p < .001). In
cases where students understood one without the other, we found that the younger
students tended to understand fractions but not decimals (5 of 7) while the older stu-
dents understood decimals but not fractions (all 4 of 4). This result may reXect the

Table 4
The relation between conceptual understanding of fractions and decimals

Note. N D 50.

Fraction quantity comparison Decimal quantity comparison patterns

Both correct
judgments

One or two incorrect 
judgments

Correct judgment with relevant justiWcation 19 7
Incorrect or questionably correct judgment 4 20
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fact that fractions are emphasized more early in teaching, although ultimately
decimal notation may be conceptually easier (see Moss & Case, 1999, for an argu-
ment for teaching fractions after percents & decimals).

3.1.5. Coherence analysis: Understanding fractions in terms of division
We are now in a position to ascertain the underlying coherence in children’s patterns

of responding across all Wve of the number tasks (Existence of Numbers Between 0 and
1, Number Thought Experiment, Fraction Quantity Comparison, Explanation of Mean-
ing of Fraction Notation, and Decimal Quantity Comparisons). If children are develop-
ing a new way of thinking about number that underlies success on all our tasks, then we
should see that children are either consistently correct on our number tasks or incorrect
on them, with very few children with partial or in between patterns. On the other hand, if
children acquire insight about fractions, decimals, and the inWnite divisibility of number
in more graded, piecemeal fashion, then, assuming no ceiling or Xoor eVects, the “In
Between” patterns should be just as common as either of the more extreme patterns.
Table 5 shows that In Between patterns were much rarer. In fact, 37% of students were
consistently correct on at least 4 out of the 5 tasks, 51% were consistently incorrect on at
least 4 out of the 5 tasks, and only 12% were correct on 2 or 3 tasks. What is most strik-
ing about the distribution of scores is that those children who showed evidence of some
understanding of fractions (i.e., those children who were not consistently incorrect) were
three times more likely to be Consistently Correct than to show the In Between pattern
of judgments. Moreover, this was as true for the younger children as it was for the older
children. Given that more than half of the children were Consistently Incorrect, we can
rule out the argument that this simply reXects a ceiling eVect.

In addition, if developing a clear model of fractions in terms of division underlies
the coherence in student responding, then we should Wnd that students who articulate
such a model should have a categorically diVerent way of responding to the other
tasks than those who do not. Table 6 shows that they do. There were strong relations
between students’ articulated model of fractions and their responses on each of the
other four tasks. Although one might expect a strong relation between their articu-
lated model of fractions and their ability to order fractions, the fact that there were
equally strong relations with the other quite diVerent tasks is striking. A two-way �2

Table 5
Within child consistency across number tasks: number of children with consistently correct, in between,
and consistently incorrect patterns

a One child not included because she had not been given one of the Wve tasks.

Grade n Number of tasks correct

Consistently correct
(4 or 5 correct)

In between 
(2 or 3 correct)

Consistently incorrect 
(1 or 0 correct)

n % n % n %

3 and 4 22 3 14 1 4 18 82
5 and 6 27a 15 56 5 18 7 26

Overall 49 18 37 6 12 25 51
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4 3 2 1 0

75 25 0 0 0
31 19 6 25 19

5 5 5 33 52
Table 6
The relation between having a Clear Division Model of fractions and one’s success on other rational num

Note. N D 49 because one child was not asked to explain the meaning of two numbers in a fraction.

Articulated Model 
of fractions

n Other number tasks (%)

Spontaneously judge 
numbers 
between 0 and 1

Correctly order 
fractions

Correctly order 
both decimals

Unde
forev
gettin

Division Model 12 100 100 83 92
Ambiguous Model 16 69 63 50 38
Incorrect or No Model 21 33 14 19 10
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analysis crossing whether or not students articulated a clear division model of frac-
tions with whether they performed correctly on all of the other number tasks was sig-
niWcant, X2 (1) D 14.74, N D 49, p < .001. (Seventy-Wve percent of the children with a
clear division model of fractions were correct on all the other tasks, compared to only
16% of students with ambiguous, incorrect, or no model of fraction patterns.) Recall
that students who gave Ambiguous explanations typically said that the two numbers
in the fraction 1/7 meant “you take one out of 7,” an answer for which “out of” could
be interpreted either to imply division or subtraction. The fact that some of these stu-
dents were systematically correct and some systematically incorrect supports our
assumptions that this expression can have two quite diVerent meanings for students.

These coherence analyses assuage a worry one might have about these tasks: chil-
dren were asked out of the blue whether there are any numbers between 0 and 1, and
perhaps with more preparation they would have understood what was being asked.
But their answers to that question cohered with the much more scaVolded and exten-
sive clinical interviews that followed, and the consistency of responses across such
very diVerent kinds of probes suggests that those children who denied the existence of
numbers between 0 and 1 had truly diVerent conceptions of number than those who
aYrmed the existence of numbers between 0 and 1.

In conclusion, the coherence of the pattern of judgments and justiWcations across
the Wve number tasks used in this study supports the view that a conceptual under-
standing of rational number is acquired as an inter-related body of representations,
including representations of division and density of number. We turn now to chil-
dren’s representations of the divisibility and continuity of matter.

3.2. Children’s concepts of matter

Children’s judgments and supporting justiWcations about whether matter contin-
ues to exist, take up space, and have weight as it is repeatedly divided into smaller
pieces (indeed pieces so small that they are no longer visible to the naked eye) were
initially scored separately. At issue was whether students would believe that these
physical quantities were continuous in the sense of being inWnitely divisible, or
whether they would argue that there would be a point at which they would cease to
exist and become “nothing at all.” Also at issue was whether they would develop
these insights at about the same time or in some regular sequence. There is some evi-
dence that student understanding of the continuity of weight lags behind their under-
standings of the continuity of matter and the space occupied by matter (Carey, 1991).

The thought experiments about the continued existence of matter and its ability to
occupy space were of equivalent diYculty. Sixty-four percent of the students (32/50)
judged that the macroscopic Styrofoam had some amount of matter and maintained
the continued existence of matter (on a microscopic scale) with repeated division. All
of these students also acknowledged that the piece would always take up space. The
thought experiment about whether the piece would always have weight was more
diYcult. Only 46% of the students (23/50) acknowledged that the piece would always
have weight. Not a single child showed an understanding of the continuity of weight
who did not also understand the continuity of matter itself and the space it occupies.
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Thus, there were three general patterns of response. The Matter, Space, and
Weight Continuous pattern characterized the judgments of those children who rea-
soned that all three physical quantities are inWnitely divisible. (By “space” in the
names of the patterns we mean, of course, the space occupied by matter. We are
probing a physical magnitude, not a geometric one.) The Only Matter and Space
Continuous pattern characterized the judgments of those children who treated matter
and occupied space but not weight as continuous. Finally, the Matter, Space, and
Weight Not Continuous pattern characterized the judgments of those children who
reasoned that with repeated division one gets to pieces that do not take up space or
have any weight and that the matter itself has disappeared. We describe and give
examples of each pattern below.

Students who showed the Matter, Space, and Weight Continuous pattern were
conWdent that pieces of Styrofoam had some amount of matter, took up space, and
had weight in all their judgments (both about macroscopic pieces and the smaller
and smaller pieces imagined in the thought experiments). Moreover, all of these
children were able to provide clear justiWcations for their answers, showing that
they had a principled set of beliefs that supported their pattern of judgments. These
beliefs included: all matter takes up space and has weight; things still exist even
when you cannot see them; dividing makes parts smaller, but does not destroy the
matter itself; and if you put everything together you would still have the same
amount. Below are two typical protocols, one from a younger and one from an
older student.

S7 (Grade 3):
(Is there a lot, tiny bit, or no amount of matter in this Styrofoam piece?) A little
bit, because even the smallest piece of the Styrofoam, it’s all, if you put all those
tiny pieces together it makes one huge piece.
(Can there be a piece of Styrofoam too small to see?) Yes, because we can’t see
everything. But you could look through a microscope.
(Matter Thought Experiment: Imagine it is possible to divide this tiny piece in
half and in half again. If we kept dividing the tiny pieces in half and in half, would
the Styrofoam matter ever disappear completely?) No there would always be
something there. Because if you had a piece of rock and you keep breaking it
and breaking it and breaking it, there would still be something there even if you
couldn’t see it anymore.
(Does this piece of Styrofoam weigh a lot, a tiny bit, or nothing at all?) A little bit
because everything weighs something, but sometimes on a scale you can’t Wgure
it out, but it still weighs something.
(Now imagine a tiny piece of Styrofoam, so tiny that you couldn’t see it. Would
that tiny piece take up any space at all?) Yes because everything takes up space.
(Would that tiny piece weigh anything at all?) Yes.
(Space Thought Experiment: Now imagine we kept cutting that tiny piece in half,
and in half again. If we kept dividing the tiny pieces in half and in half again,
would we ever get to a piece that does not take up any space?) No because you
can’t just make something disappear, there’s always something there.
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(Weight Thought Experiment: Would we ever get to a piece that has no weight?)
Everything weighs something; if you put all those pieces together it would be
heavier.

S46 (Grade 6):
(Is there a lot, tiny bit, or no amount of matter in this Styrofoam piece?) A little
bit, it’s something, not nothing.
(Can there be a piece of Styrofoam too small to see?) Yes, microscopic, human
eye can’t see because the way we focus our eye.
(Matter Thought Experiment: Imagine it is possible to divide this tiny piece in
half and in half again. If we kept dividing the tiny pieces in half and in half,
would the Styrofoam matter ever disappear completely?) Half of that is still
something and half of that is very very tiny but it’s still something. There’s
nothing that half of it is nothing. There’s no one object that half of it is
nothing.
(Does this piece of Styrofoam weigh a lot, a tiny bit, or nothing at all?) A very,
very, very, very little bit. Like a trillionth of an ounce. It is somethingƒit is mat-
ter.
(Now imagine a tiny piece of Styrofoam, so tiny that you couldn’t see it. Would
that tiny piece take up any space at all?) Yes, it is something taking up a certain
amount of space.
(Would that tiny piece weigh anything at all?) Probably but I don’t think there is
a machine or scale that can weigh stuV that small.
(Space Thought Experiment: Now imagine we kept cutting that tiny piece in half,
and in half again. If we kept dividing the tiny pieces in half and in half again,
would we ever get to a piece that does not take up any space?) No, no matter how
tiny, as long as it’s matter it takes up space because it’s there.
(Weight Thought Experiment: Would we ever get to a piece that has no weight?)
ƒIt would be unmeasurable, but it would have weight. If a tiny person tried to
pick it up, it would have weight to him.

Students who showed the Only Matter and Space Continuous pattern were conW-
dent that as objects become extremely small they still exist and take up space, but
denied that they continue to have weight. Indeed, the contrast between their judg-
ments about weight and their judgments about matter and occupied space were strik-
ing as they all denied that even a macroscopic piece of Styrofoam had weight. Below
are protocols typical of students showing this judgment pattern.

S13 (Grade 4):
(Is there a lot, tiny bit, or no amount of matter in this Styrofoam piece?) A little
bit. The table would be bigger.
(Can there be a piece of Styrofoam too small to see?) Yes, lots of things are
microscopic, but they are still there.
(Matter Thought Experiment: Imagine it is possible to divide this tiny piece in
half and in half again. If we kept dividing the tiny pieces in half and in half, would
the Styrofoam matter ever disappear completely?) No, I think it might be able to
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go on forever. I was seeing in my mind and they could get more microscopic
and more microscopic, but they’d still be there.
(Does this piece of Styrofoam [medium piece] weigh a lot, a tiny bit, or nothing
at all?) Nothing at all. (Probe: 0 g?) Yes. A very, very, very, very little bit. Like a
trillionth of an ounce. It is somethingƒit is matter. (Does this piece of Styro-
foam [smaller piece] weigh a lot, a tiny bit, or nothing at all?) Nothing at all,
because if I felt this [bigger piece] and it felt like nothing, that wouldn’t either.
(Now imagine a tiny piece of Styrofoam, so tiny that you couldn’t see it. Would
that tiny piece take up any space at all?) Yes, because all matter takes up space.
(Would that tiny piece weigh anything at all?) No because it is very microscopic.
(Space Thought Experiment: Now imagine we kept cutting that tiny piece in half,
and in half again. If we kept dividing the tiny pieces in half and in half again,
would we ever get to a piece that does not take up any space?) No, because every-
thing takes up space.
(Weight Thought Experiment: Not asked because student had already denied that
a microscopic piece would have any weight.)

S33 (Grade 5):
(Is there a lot, tiny bit, or no amount of matter in this Styrofoam piece?) A lot;
you can’t see everything going on. You don’t know where it came from, what
it’s made from; it could be a rock, like one in your garden.
(Can there be a piece of Styrofoam too small to see?) Yes, cut it up into tiny
pieces and disintegrate all of it.
(Matter Thought Experiment: Imagine it is possible to divide this tiny piece in half
and in half again. If we kept dividing the tiny pieces in half and in half, would the Sty-
rofoam matter ever disappear completely?) No, there would be more left every time
you tried to divide it. Because you can’t make it disappear—that’s impossible.
(Does this piece [medium size] of Styrofoam weigh a lot, a tiny bit, or nothing at
all?) A tiny bit. (Does this [smaller] piece of Styrofoam weigh a lot, a tiny bit, or
nothing at all?) Nothing at all. Because it is really little. Like a straw wrapper ƒ
(Now imagine a tiny piece of Styrofoam, so tiny that you couldn’t see it. Would
that tiny piece take up any space at all?) Yes, because it still has a little bit of it
left so it still takes up space.
(Would that tiny piece weigh anything at all?) No because it is a little piece.
(Space Thought Experiment: Now imagine we kept cutting that tiny piece in half,
and in half again. If we kept dividing the tiny pieces in half and in half again,
would we ever get to a piece that does not take up any space?) No, because it still
hasn’t disappeared.
(Weight Thought Experiment: Would we ever get to a piece that has no weight?)
Yes, doesn’t weigh anythingƒ.like the smallest piece here has no weight.

Students showing the Matter, Space, and Weight Not Continuous pattern consis-
tently judged that you would get to a point where there was no amount of matter,
space, and weight in a piece. The students who showed this pattern typically made
judgment errors prior to any of the thought experiments, whether for matter, space,
or weight. Below are two typical protocols.



C.L. Smith et al. / Cognitive Psychology 51 (2005) 101–140 129
S3 (Grade 3):
(Is there a lot, tiny bit, or no amount of matter in this [medium] Styrofoam
piece?) A tiny bit. (Is there a lot, tiny bit, or no amount of matter in this [smaller]
Styrofoam piece?) Nothing at all because if you have something small and it’s a
part of it, the small piece would have no amount because the big piece would
take up all the matter.
(Can there be a piece of Styrofoam too small to see?) No. (Well, actually some
pieces are so small we can’t see them with our eyes, which is why we need micro-
scopes and other special instruments.)
(Matter Thought Experiment: Imagine it is possible to divide this tiny piece in
half and in half again. If we kept dividing the tiny pieces in half and in half, would
the Styrofoam matter ever disappear completely?) Yes you could go forever and
ever, but after a year, it would stop, there wouldn’t be anything left.
(Does this piece [medium size] of Styrofoam weigh a lot, a tiny bit, or nothing
at all?) A tiny bit. (Does this [smaller] piece of Styrofoam weigh a lot, a tiny
bit, or nothing at all?) Nothing at all. [0 g?] Yes, because if you took a tiny
piece oV, it would just feel like your own skin because it doesn’t weigh
anything.
(Now imagine a tiny piece of Styrofoam, so tiny that you couldn’t see it. Would
that tiny piece take up any space at all?) No because if you have really big things
on a table and kept it in the corner, it wouldn’t take up any space.
(Would that tiny piece weigh anything at all?) No.
(Weight and Space Thought Experiments: Not asked.)

S39 (Grade 6):
(Is there a lot, tiny bit, or no amount of matter in this [medium] Styrofoam
piece?) A tiny bit. (Is there a lot, tiny bit, or no amount of matter in this [smaller]
Styrofoam piece?) None at all, because I can’t feel nothing. If I press, I won’t
feel it. I can feel the bigger piece.
(Can there be a piece of Styrofoam too small to see?) No. (Well, actually some
pieces are so small we can’t see them with our eyes, which is why we need micro-
scopes and other special instruments.)
(Matter Thought Experiment: Imagine it is possible to divide this tiny piece in
half and in half again. If we kept dividing the tiny pieces in half and in half, would
the Styrofoam matter ever disappear completely?) If keep cutting and can’t see it,
it’s disappeared, and no more matter left to divide.
(Does this piece [medium size] of Styrofoam weigh a lot, a tiny bit, or nothing at
all?) A tiny bit. (Does this [smaller] piece of Styrofoam weigh a lot, a tiny bit, or
nothing at all?) Nothing at all. Like one grain of sugar. You won’t feel nothing.
If you put (more) you do.
(Now imagine a tiny piece of Styrofoam, so tiny that you couldn’t see it. Would
that tiny piece take up any space at all?) No, because if so tiny how could it take
up space?
(Would that tiny piece weigh anything at all?) No, because this (small piece) you
can’t feel it.
(Weight and Space Thought Experiments: Not asked.)
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These results replicate earlier Wndings that there are some children who do not
appreciate the continuity of matter itself, matter’s spatial extent, or its weight,
and that understanding the continuity of matter’s spatial extent reliably precedes
the understanding of the continuity of its weight (Carey, 1991; Smith,
Grosslight, Davis, Unger, & Snir, 1994). It goes beyond the earlier studies by
including parallel thought experiments about all three quantities and more care-
fully probing the thought experiment about matter (i.e., making it clearer
whether students think the matter itself has disappeared or just cannot be seen)
and by conWrming that understanding of the continuity of matter goes hand-in-
hand with the understanding of the continuity of space. Carey (1991) found a
similarly close relation between understanding of continuity of matter and under-
standing continuity of the space occupied by matter, using a diVerent measure of
continuity of matter.

It ought not to be terribly surprising that we Wnd evidence of a developmental
trend in the acquisition of increasingly more sophisticated understandings of matter,
space, and weight (see Table 7). The modal response for third and fourth graders was
the Matter, Space, and Weight Not Continuous pattern, shown by 50% (11 out of 22)
of these students, whereas for Wfth and sixth graders, the modal response was the
Matter, Space, and Weight Continuous pattern, shown by 64% (18 of 28) of these stu-
dents. The association between grade and whether or not a student showed the Mat-
ter, Space, and Weight Continuous pattern is signiWcant (X2 (1) D 8.57, p < .01,
N D 50), though the relation is hardly categorical. About one-quarter of the third and
fourth graders already treat matter, occupied space, and weight as continuous, while
about one-quarter of Wfth and sixth graders still reason that matter, occupied space,
and weight are not continuous. What is most striking about these results is not the
Wnding of a developmental trend across grade levels but rather the high degree of
coherence within each child for a range of understandings. At both grade levels, the
majority of students (73% for grades 3–4 and 89% for grades 5–6) reasoned consis-
tently about all three physical variables: either consistently treating them all as dis-
continuous or continuous. Further, as will be discussed in the next section, a high
degree of coherence was found not only within the domains of matter and number
considered separately, but also across the domains of matter and number.

Table 7
Children’s understanding of the continuity of physical quantities as a function of grade

Grade n Pattern on matter, space, and weight thought experiments

Matter, space, and 
weight continuous

Only matter and space 
continuous

Matter, space, and 
weight not continuous

n % n % n %

3 and 4 22 5 23 6 27 11 50
5 and 6 28 18 64 3 11 7 25

Overall 50 23 46 9 18 18 36
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3.3. Interrelations between children’s conceptions of matter and number

In a result of theoretical and practical importance, students’ patterns on the
Number Thought Experiment were found to be strongly related to their patterns
on the Matter, Space, and Weight Thought Experiments (see Tables 8 and 9). All
19 students who showed the Never Get to Zero pattern, judging that numbers
could be divided ad inWnitum, also judged that matter would continue to exist and
take up space with repeated divisions. By contrast, only 36% of students who
showed the Get to Zero number pattern did so. Indeed, some students who had
inWnitely divisible number and matter patterns explicitly justiWed their Number
answers by analogy to the Matter questions (which had come earlier in the inter-
view). For example:

• “Same as Styrofoam, could keep going forever.” (S45, Grade 6)
• “There’s an endless amount of numbers between 1 and zero; like Styrofoam,

there’s always something there.” (S46, Grade 6)
• “It goes back to the matter thing. You could divide a molecule and keep divid-

ingƒan inWnite number.” (S47, Grade 6)

The results also show that student judgment of the inWnite divisibility of matter
and the space it occupies reliably preceded their judgment of the inWnite divisibility
of number. Thirteen children judged matter itself as inWnitely divisible, judging
that it would always occupy some space, but judged number not to be inWnitely
divisible, whereas the reverse pattern never occurred (X2 (1) D 17.24, p < .001,
N D 50).

Table 8
The relation between pattern on number thought experiment and matter and space thought experiments

Note. N D 50.

Pattern on number thought experiment Pattern on matter and space thought experiments

Matter always exists 
and takes up space

Get to point where 
no matter or space

Never Get to Zero 19 0
Transitional 4 2
Get to Zero 9 16

Table 9
The relation between pattern on number thought experiment and pattern on weight thought experiment

Note. N D 50.

Pattern on number thought experiment Pattern on weight thought experiment

Matter always has weight Get to point where has no weight

Never Get to Zero 18 1
Transitional 3 3
Get to Zero 2 23
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Finally, the data reveal that, though student judgment of the inWnite divisibility
of matter itself and the space occupied by matter reliably precedes that of number,
their judgment of the inWnite divisibility of weight seems to occur at roughly the
same time as that of number (see Table 9). Only 2% of students (1 of 50) under-
stood the inWnite divisibility of number and not that of weight, and only 4% (2 of
50) understood inWnite divisibility of weight while having no insight about inWnite
divisibility of number (Get to Zero patterns). Further, those students with
transitional patterns on number were in between in their understanding of weight:
half already understood the inWnite divisibility of weight, while the other half did
not. These results have implications for what could be a two-way process by
which a conceptual change in one domain might reciprocally aid in the change in
another.

These data extend to a much younger age the overall consistency Tirosh and Stavy
(1996) found between the conceptualization of physical entities and mathematical
entities either as both inWnitely divisable or both not so. Tirosh and Stavy interpreted
this consistency as reXecting children’s belief (or lack thereof) in a general rule
“everything can be divided.” Positing such a rule, however, does not explain the sys-
tematic unfolding of the quantities children consider divisible (matter itself, the space
occupied by matter Wrst, then number and weight).

4. Discussion

4.1. Developmental changes in children’s understanding of number

Not surprisingly, the study reported here replicates, yet again, the oft-replicated
Wndings in the literature concerning young elementary school aged children’s mis-
understanding of fractional notation. In our study, we found that most third and
fourth graders cannot order fractions or decimals, and cannot explain why there
are two numbers in a given fraction. By Wfth and sixth grade, about one-third of the
children still reveal clear misunderstanding of fractional notation by these
measures.

In addition, clinical interview questions used in these studies allowed us to
explore whether there was also a developmental shift in children’s understanding
of the density and inWnite divisibility of number. Consistent with the claim
that children do not understand the density of number, many denied that there are
any numbers between 0 and 1, and when reminded about “1/2” claimed that there
were only a few. Also, consistent with the claim that children confuse subtraction
with division, many children believed that repeated halving would fairly quickly
lead to 0. Among these children, those who believed zero was the last number
thought one would stop with zero, while those who were aware of other numbers
thought one would pass zero and go to the negative numbers. Notice that our
thought experiment reXects an inductive leap children made on their own: children
were not directly taught that there are an inWnite number of fractions between 0
and 1.
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4.2. Explaining the developmental shift in children’s thinking about number: 
Conceptual change or knowledge enrichment?

One might think about the developmental shift in children’s thinking about num-
ber in one of two diVerent ways: as a conceptual change, such that the concept number
before and after the change is incommensurable, or as an enrichment of the child’s
beliefs about number, such that new facts about the same entities, numbers, are
learned. On the face of it, it might seem that an enrichment position should be pre-
ferred because representations of positive integers based on the successor relation
continue to play an important role in mathematical thought even after representa-
tions of rational number have been constructed. This is so, but coming to see “1/3” as
a number on a par with “1” and “3” may nonetheless implicate conceptual change
within the concept number, involving a reconceptualization of the integers.

Others have denied the conceptual change position on the grounds that proto-
numerical understanding of ratios and division is part of children’s mental models
for reasoning quantitively about objects and space (e.g., Mix et al., 1999). While this is
so, and is presupposed by bootstrapping accounts that draw on these representations
in the construction of representations of rational number, these are models of quanti-
ties in general and not number in particular. One can partition objects and sets with-
out understanding that there are numbers like 1/2 or 1/4. Indeed, Hartnett and
Gelman (1998) provide persuasive evidence that many Wrst grade children do not
understand that one-half is a number between 0 and 1.

Obviously, deciding whether the construction of rational number requires conceptual
change requires distinguishing conceptual change from knowledge enrichment, a notori-
ously diYcult but not impossible task (see Carey, 1991; Hartnett & Gelman, 1998; Kit-
cher, 1988; Kuhn, 1982). Conceptual changes involve diVerentiations and coalescences,
such that the extension of a concept and its relations to other concepts are qualitatively
diVerent after the change than before it. The diVerentiations and coalescences implicated
in conceptual change commit the child to concepts that would be incoherent in terms of
the conceptual systems on each side of the divide. In contrast, in conceptual enrichment,
new properties or subcategories are added without changing the fundamental deWnition
or core of a concept or its network of relations with other concepts. Consequently, learn-
ing should be much more diYcult in cases of conceptual change.

In previous work, Hartnett and Gelman (1998) found that 5- to 7-year-olds had
much more diYculty understanding and ordering fractions (even simple fractions
like one-half with which they had the most experience) than they did with under-
standing the Successor Principle, the principle that every natural number has a suc-
cessor and that there is no largest number. They argued that inducing the Successor
Principle is relatively easy even though children had never been taught this directly in
school because it is consistent with young children’s conception of number as count-
ing number. In contrast, learning about fractions is diYcult despite prior experience
because it is inconsistent with their initial conception of number. We agree with their
conclusion and turn now to four additional considerations that lead us to favor the
hypothesis that genuine conceptual change, rather than knowledge enrichment, is
implicated in this transition.
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4.2.1. Argument 1: Learning about fractions requires change in children’s deWnition of 
number

Knowledge enrichment consists in changes of beliefs formulated over the same
concepts before and after the change, or in the addition of new concepts that do not
implicate the revision or abandonment of antecedent ones. Consider the change that
occurs when children learn that there are subtypes of dogs, breeds such as dachs-
hunds or poodles, of which they were initially unaware. This change is a conceptual
enrichment rather than a conceptual change because coming to represent these new
concepts, dachshund and poodle, does not challenge the core of the child’s initial con-
cept dog. Dogs, before and after the change, are four-legged furry mammals of a cer-
tain size that bark, make good pets, wag their tails, eat dog food, and so on. Although
some aspects of their appearance may be novel (e.g., the long body of the dachshund),
once it is pointed out that they are dogs, they are easily recognizable as dogs in good
standing—just shorter and longer than the typical dog. Whatever essential character-
istics of dogs the child represents (e.g., that they are born from dog parents or that it
is something about their insides that makes them dogs; Gelman & Wellman, 1991;
Keil, 1989) are true of dogs before and after this change. In other words, children
diVerentiate the concept dog into breeds without changing their initial concept, either
in its essential features or in its relations to other biological kinds such as plants.
Hence, children do not show strong resistance to learning about these new subcate-
gories nor do they show strong misconceptions about their properties.

In contrast, learning that there are new kinds of numbers—such as fractions and
decimals—is not so simple. Indeed, acknowledging their existence directly challenges
children’s initial and entrenched concept of number as counting number. Before the
change, “1” and “1/2” are fundamentally diVerent kinds of entities: “1” is a number
that occurs in the count list and “1/2” is not. Some children deny that “1/2” is a num-
ber, and, although this might merely be a semantic issue to do with the term “num-
ber,” the fact is that even those children who come to agree that “1/2” is a number
still often claim there are only a few numbers between 0 and 1 and that repeated divi-
sion will get to 0. This implicates diVerences in their concept of number, not just the
meaning of the word. After the change, “3” is reconceptualized as a number of the
same status as “1/3”—it is its multiplicative inverse, it can be expressed as “3/1” and,
like 1/3, it corresponds to just another point along the number line. This is a classic
coalescence in which the coalesced concept (that unites numbers like 1/3 and num-
bers like 3) makes no sense in the original system. The change also involves diVerenti-
ating subtraction from division; this is a classic diVerentiation in which the
undiVerentiated concept (subtraction/division) is incoherent from the point of view
of the attained system. And clearly the extension of the concept number changes rad-
ically, as well does as the network of interrelations based on the diVerentiated opera-
tion of division that constitutes the representation of rational number.

Thus, the argument that the core of the concept of positive integer remains essen-
tially unchanged before and after the construction of rational number, because it is
based on the successor relation, ignores the fact that in developing a concept of ratio-
nal number, children have developed an entirely diVerent model of number that has
transformed their understanding of positive integers. Numbers are no longer solely
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the counting numbers, and the positive integers are now a subset of all numbers, lying
at discrete points along a seemingly continuous number line.

In sum, the Wrst argument that conceptual change is implicated in the child’s con-
struction of rational number has two parts: the analysis of the change sketched
above, along with the empirical evidence that children progress from an earlier
understanding of number embedded in the arithmetic of the counting numbers to a
radically diVerent concept that encompasses rational number.

4.2.2. Argument 2: Strong within child consistency in reasoning about number
A second line of argument for the conceptual change position derives from the

pattern and extent of coherence found in children’s reasoning about number across
quite diVerent kinds of tasks. Strong coherence is expected on a conceptual change
account, both for younger and older children, because concepts are interrelated
diVerently in the two systems, with understanding of one aspect of the system con-
straining understanding of others. In contrast, on a knowledge enrichment
account, coherence is not an intrinsic part of the change process, as new facts can
be added somewhat independently. Further, on the knowledge enrichment view,
any coherence that is observed would be seen as resulting from extrinsic factors
such as lack of exposure or explicit teaching. On this view, young children may
consistently fail on certain tasks when they have not been exposed to relevant
information yet; similarly, older children may consistently succeed when they have
been explicitly taught all the items in question. But partial patterns of success and
failure should also be abundant, especially because one is typically not exposed to
all of the information at once.

Three features of the observed patterns of coherence favor a conceptual change
interpretation. First, there was exceptionally strong coherence among the diverse
number tasks. Being able to articulate a clear division model of fractions was
strongly associated with spontaneously acknowledging the existence of numbers
between 0 and 1, being able to order fractions and decimals, and understanding the
inWnite divisibility of number. Indeed, if one considers the Wve separate number tasks,
the vast majority of children were either systematically correct or systematically
incorrect with very few children having in between patterns.

Second, coherence was equally striking at both grade groupings. On an exposure
account one might have predicted less coherence among the third and fourth grade
children than among the Wfth and sixth grade children because the younger children
have had more experience with fractional than decimal notation. Hence, one might
have predicted that many third and fourth grade children would have “in between”
patterns reXecting only partial mastery of these ideas. Yet this prediction is not borne
out. Only one of the third and fourth grade children had an in between pattern; the
rest were either consistently correct (3 out of 22) or consistently incorrect (18 out of
22). Indeed the overwhelming failure of the third and fourth grade children on the
diVerent fraction problems—despite exposure—is quite striking. A detailed examina-
tion of their answers revealed that they had heard of fractions and knew something
about them, they just did not understand them correctly as numbers. This pattern of
systematic misunderstanding of a new idea—by assimilating it to an earlier
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entrenched understanding—lends support to the conceptual change rather than to
the knowledge enrichment account.

Third, one of the tasks—the number thought experiment—tapped an under-
standing that children had not been explicitly taught. The fact that this task pat-
terned as closely with the other tasks that were more related to direct instruction
(such as acknowledging the existence of numbers between 0 and 1, understanding
the meaning of the two numbers in a fraction, and correctly ordering fractions and
decimals) also lends more support to the conceptual change than the knowledge
enrichment position. If coherence is an artifact of direct instruction, then children’s
understanding of the inWnite divisibility of number thought experiment should lag
behind because it is not something that has been directly taught. In contrast, if
coherence reXects conceptual restructuring, then the internal changes in children’s
concept of number needed to assimilate the notions of fractions and decimals
should be manifest in changed understanding of the number thought experiment as
well.

4.2.3. Argument 3: Making sense of the puzzling things that children say
One of the main hallmarks of conceptual change can be dubbed the “huh?” phe-

nomenon. Children say things that make no sense if the terms in their language
reXected the same concepts as adults use them to express. The transcripts included in
the results sections from the “Get to 0” children contain many examples. We urge
you to read these carefully. For example, student S39 said, in response to the Number
Thought question about whether one could keep divided by 2 forever, “No, after 1 is
0. 0 is nothing else. If kept dividing 1/2, then 1/1, then 0/1, and 0/0 and that’s it.” Stu-
dent S9’s response to the question was “Yes, it’ll soon be just a black line, just num-
bers.” And in response to the question of whether one would ever get to zero, the
student replied“Yes, if you have 8 parts, then you minus one and minus one until you
get a minus 8, then you’ll get 0.” Although these answers seem incoherent from the
adult perspective, they make much more sense when one assumes that children are
thinking of “division” as “subtraction” and of numbers as discontinuous points in a
sequence.

4.2.4. Argument 4: Within-child consistency in reasoning about number and physical 
quantities

Still a fourth argument in favor of the conceptual change account is the within
child consistency we found in children’s reasoning about number and physical quan-
tities. Such consistency would be expected on conceptual change accounts that
invoke bootstrapping processes across the domains, but not on simple knowledge
enrichment accounts. Indeed, on knowledge enrichment accounts, one might even
assume that students always are aware of the continuity of matter because these
understandings are “perceptually” given, and that the only real challenge is extending
these understandings to number. However, our data suggest that the developmental
story of how children learn about the inWnite divisibility of number is considerably
more complicated than that and involves changing their conceptions of physical
quantities as well.
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4.3. The matter interview

Turning to the results on the matter interview, the present study replicates several
phenomena previously observed. Many children of these ages (8–12) do not yet con-
ceptualize matter itself as continuous, let alone properties of matter such as volume
or weight, although about one-quarter of the youngest children (8- to 10-year-olds)
tested here did. As in previous studies (Carey, 1991), understanding matter as contin-
uous was closely associated with understanding the space occupied by matter as con-
tinuous, and understanding weight as a continuous extensive variable lagged
somewhat behind. In general, however, there was still considerable coherence among
all three understandings. The majority of children either consistently judged all three
aspects of matter to be inWnitely divisible or none to be. This latter Wnding is consis-
tent with the considerable coherence in children’s conceptions of matter, space, and
weight found by Smith (2005) and with her explanation of these and other phenom-
ena as stemming from a conceptual change within the child’s intuitive matter theory.

We turn now to the new Wnding introduced in the present study: namely, the close
association between coming to understand matter, weight, and space as continuous,
on the one hand, and coming to understand number as continuous, on the other. As
shown in Tables 8 and 9, there is a fairly close relation between these two achieve-
ments. All children who understood the inWnite divisibility of number also had a con-
tinuous model of matter. Furthermore, all children who had a discontinuous model
of matter also failed to understand number as inWnitely divisible. Nonetheless, an
understanding of the continuity of matter itself (including its capacity to occupy
space) appears to precede the understanding of number as inWnitely divisible. As seen
in Table 8, about one-Wfth of the sample understood the former but not the latter,
whereas the reverse was never true. Children understood weight and number as
repeatedly divisible quantities at about the same time (see Table 9).

These results are important for three reasons. First, they provide evidence for the
assumption in the literature on rational number that protoquantitative conceptions
of the physical world may serve as models for fractions and decimals (Confrey, 1994;
Moss & Case, 1999; Resnick & Singer, 1993). Clearly, if students are going to use
physical understandings to aid in the construction of mathematical understandings,
it is necessary that they have the relevant physical insights Wrst. Why is it that a con-
tinuous conception of matter might precede that of number? We would argue that
children’s concepts of physical quantities, unlike their initial concept of number, are
not inherently discrete. That is, there is no positive impediment to a continuous con-
ception of physical quantity similar to the impediment from the concept of counting
number to the concept of rational number. Furthermore, there appears to be percep-
tual support for a continuous representation of physical extent.

Second, these data are important because they emphasize that at least some of the
protoquantitative conceptions relevant to rational number are themselves hard won
achievements—a fact that has been largely ignored or underappreciated in the litera-
ture on mathematical development and that is often overlooked when researchers
take a knowledge enrichment rather than conceptual change perspective. Evidently,
the fact that extents of matter may appear continuous, perceptually, does not
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automatically lead children to a conception of matter as continuous. That is, such a
conception does not come for free, but involves a genuine abstraction from percep-
tual experience. To be sure, it is possible that, by concentrating on matter, we have
underestimated the age at which most children come to appreciate the continuity of
physical extent. What, for example, if we had looked at length? This question bears
further research, but we note that informal piloting of a thought experiment about
the inWnite divisibility of a line (with most of the younger children at the very end of
the interview) yielded the same pattern of data. Success on this task appeared to pat-
tern with the matter and space thought experiments; there was no evidence that
understanding the continuity of a line was easier. Children’s diYculty in understand-
ing the continuity of a line is consistent with other analyses of the child’s concept of
line. As work in children’s understanding of geometry shows, children Wrst under-
stand geometric entities such as lines and circles as concrete physical marks on paper,
and deny that a line could connect two points in empty space or could continue oV

the paper (Piaget, Inhelder, & Szeminska, 1964). The capacity for geometric abstrac-
tion to support these latter thought experiments may be important for the construc-
tion of a continuous model of physical extent.

Third, in our view, the most important result of the paper is the high level of coher-
ence between children’s thinking about the inWnite divisibility of weight, on the one
hand, and the inWnite divisibility of number, on the other. Such mutual dependence is
what one would expect if change involved a conceptual bootstrapping process rather
than simple knowledge enrichment. At Wrst glance, the mutual dependence may seem
inXated by the fact that similar thought experiments probed children’s concepts of
number, matter, volume, and weight. While that is so, children’s responses to the
thought experiments predict other indications of their understanding of rational num-
ber (e.g., their abilities to order fractions or explain notation) and other indications of
their understanding of matter (e.g., their diVerentiation of weight from density, their
sorting of entities as material vs. non-material, their appreciation that solid entities are
material throughout, see Carey, 1991; Smith et al., 1997). Thus, we conclude that the
thought experiments reXect conceptual changes in each case, and the two conceptual
changes are indeed mutually supportive. The association between continuous concepts
of number and of weight was nearly perfect (see Table 9).

We return now to the paradox we raised in Section 1. The literature on rational
number assumes that proto-quantitative conceptions of physical extent as continu-
ous, together with processes operating over those representations (e.g., computing
similarity in proportions, splitting, doubling, and so on), provide models that chil-
dren can build on in coming to understand rational number. Training studies (e.g.,
Moss & Case, 1999) support this assumption. We too agree with it, although we note
that those prior conceptions are not nearly as robust in young children as has been
assumed in that literature. Further, training studies also support the assumption that
applying number to physical extent, through operations of measurement, supports
conceptual change within concepts of weight, space, and matter (Smith et al., 1994,
1997). In other words there are multiple, two-way interactions between the domains
of number and matter, as children construct an understanding of the continuity of
matter, space, and weight, and an understanding of rational number. This is how
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bootstrapping works—exploring the mappings between domains provides explicit
representations of some of the conceptual relations among partially understood con-
cepts, and leads to changes within each of the domains under construction. Thus, the
present study not only provides strong evidence that the developmental changes in
children’s understanding of number involve conceptual changes, but also that this
change may involve iterative cycles of bootstrapping. A central challenge for future
work is to use microgenetic methods in explicit teaching studies in order to get an
even more detailed understanding of how such bootstrapping might work.
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